Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Luiz Ornaghi Júnior, Heitor

  • Google
  • 2
  • 8
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Mechanical behavior of carbon/glass polypropylene hybrid composites1citations
  • 2023Production of a thermoplastic polyurethane/silver nanoparticles <scp>3D</scp> filament with antiviral properties to combat <scp>SARS‐CoV</scp>‐23citations

Places of action

Chart of shared publication
Ost, Charles Antonio
1 / 2 shared
Bortoli, Bruna Farias De
1 / 1 shared
Rego, Artur S. C.
1 / 1 shared
Camargo, Monique Camille R.
1 / 1 shared
Zattera, Ademir José
1 / 3 shared
Ernzen, Juliano Roberto
1 / 2 shared
Agnol, Lucas Dall
1 / 2 shared
Faccio, Maíra
1 / 1 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Ost, Charles Antonio
  • Bortoli, Bruna Farias De
  • Rego, Artur S. C.
  • Camargo, Monique Camille R.
  • Zattera, Ademir José
  • Ernzen, Juliano Roberto
  • Agnol, Lucas Dall
  • Faccio, Maíra
OrganizationsLocationPeople

article

Production of a thermoplastic polyurethane/silver nanoparticles <scp>3D</scp> filament with antiviral properties to combat <scp>SARS‐CoV</scp>‐2

  • Ernzen, Juliano Roberto
  • Agnol, Lucas Dall
  • Luiz Ornaghi Júnior, Heitor
  • Faccio, Maíra
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:label /><jats:p>Antiviral agents present a propitious alternative to prevent pathogen transmission on various surfaces. In the present study, we successfully synthesized nanocomposites of thermoplastic polyurethanes with silver nanoparticles (TPU/AgNPs) via extrusion. To comprehensively evaluate their potential in antiviral applications, we conducted a thorough analysis of the nanocomposites, encompassing investigations into their chemical structure, physicochemical and mechanical properties, cytotoxicity, antibacterial activity, and antiviral efficacy. Remarkably, the incorporation of AgNPs had no discernible impact on the chemical structure of the materials, ensuring the preservation of essential properties. Moreover, the nanoparticles exhibited remarkable stability within the TPU matrix, with no detectable leaching of AgNPs observed in any of the studied nanocomposites. The nanocomposites demonstrated exceptional antibacterial efficiency, effectively inhibiting bacterial growth while concurrently revealing no cytotoxic effects in vitro for BALB/3 T3 cells. The antiviral performance against SARS‐CoV‐2 proved highly potent, achieving inactivation yields surpassing 99.0%. Leveraging these advantageous attributes, we harnessed the potential of TPU/AgNPs nanocomposites to produce various versatile products, such as cell phone cases and 3D‐printing filaments. In conclusion, this study underscores the immense promise of antiviral TPU/AgNPs nanocomposites, offering new insights into the domains of materials science and infection control, contributing to a healthier and safer future.</jats:p></jats:sec>

Topics
  • nanoparticle
  • nanocomposite
  • surface
  • silver
  • extrusion
  • leaching
  • thermoplastic
  • size-exclusion chromatography