Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Metin, Merve

  • Google
  • 1
  • 5
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Improving bonding strength of injection Overmolded composites2citations

Places of action

Chart of shared publication
Özkoç, Güralp
1 / 1 shared
Sezen, Meltem
1 / 4 shared
Kodal, Mehmet
1 / 4 shared
Akpınar, Serkan
1 / 1 shared
Altan, M. Cengiz
1 / 9 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Özkoç, Güralp
  • Sezen, Meltem
  • Kodal, Mehmet
  • Akpınar, Serkan
  • Altan, M. Cengiz
OrganizationsLocationPeople

article

Improving bonding strength of injection Overmolded composites

  • Özkoç, Güralp
  • Sezen, Meltem
  • Kodal, Mehmet
  • Akpınar, Serkan
  • Metin, Merve
  • Altan, M. Cengiz
Abstract

<jats:title>Abstract</jats:title><jats:p>The overmolding of short fiber reinforced polymer compounds onto continuous fiber reinforced composite substrates provides design flexibility and the ability to tailor stiffness, strength, and damage tolerance for structural applications. In this work, a novel molding approach that enhances the bonding strength by mechanical interlocking is presented. The effectiveness of the proposed approach was validated by characterization of the bonding strength between a short glass fiber PP (SGFPP) composite overmolded onto a continuous glass fiber reinforced PP (CGFRPP) prepreg. Enhancement of the bonding strength was achieved by judiciously drilling tapered holes on the CGFRPP substrate before molding, which facilitated better interlocking with the injection molded SGFPP composite. The overmolding of preheated composites with tapered holes yielded up to 60% improvement in bonding strength. In general, having multiple holes helped improve bonding up to certain hole diameter. Similarly, preheating of the substrate over a short time improved the interfacial adhesion, while extended  preheating resulted in a reduction of bonding quality. SEM analysis of the fracture surfaces after the tensile debonding test revealed that the SGFPP filled the holes on the substrate during overmolding.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • compound
  • polymer
  • scanning electron microscopy
  • glass
  • glass
  • strength
  • composite