People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kodal, Mehmet
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Development of Electrically Conductive Wood-Based Panels for Sensor Applications
- 2023A comprehensive review of the recent developments in thermoplastics and rubber blends‐based composites and nanocompositescitations
- 2023Solid particle erosion and scratch behavior of novel scrap carbon fiber/glass fabric/polyamide 6.6 hybrid compositescitations
- 2022Improving bonding strength of injection Overmolded compositescitations
Places of action
Organizations | Location | People |
---|
article
Improving bonding strength of injection Overmolded composites
Abstract
<jats:title>Abstract</jats:title><jats:p>The overmolding of short fiber reinforced polymer compounds onto continuous fiber reinforced composite substrates provides design flexibility and the ability to tailor stiffness, strength, and damage tolerance for structural applications. In this work, a novel molding approach that enhances the bonding strength by mechanical interlocking is presented. The effectiveness of the proposed approach was validated by characterization of the bonding strength between a short glass fiber PP (SGFPP) composite overmolded onto a continuous glass fiber reinforced PP (CGFRPP) prepreg. Enhancement of the bonding strength was achieved by judiciously drilling tapered holes on the CGFRPP substrate before molding, which facilitated better interlocking with the injection molded SGFPP composite. The overmolding of preheated composites with tapered holes yielded up to 60% improvement in bonding strength. In general, having multiple holes helped improve bonding up to certain hole diameter. Similarly, preheating of the substrate over a short time improved the interfacial adhesion, while extended preheating resulted in a reduction of bonding quality. SEM analysis of the fracture surfaces after the tensile debonding test revealed that the SGFPP filled the holes on the substrate during overmolding.</jats:p>