People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Christiansen, Jesper Declaville
Aalborg University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (56/56 displayed)
- 2024Rheology of plant protein–polysaccharide gel inks for 3D food printingcitations
- 2024The Effect of pH on the Viscoelastic Response of Alginate-Montmorillonite Nanocomposite Hydrogelscitations
- 2023The Effect of Physical Aging on the Viscoelastoplastic Response of Glycol Modified Poly(ethylene terephthalate)citations
- 2023Mechanical Properties of Alginate Hydrogels Cross-Linked with Multivalent Cationscitations
- 2022A model for equilibrium swelling of the upper critical solution temperature type thermoresponsive hydrogelscitations
- 2022Pressure-Independent Through-Plane Electrical Conductivity Measurements of Highly Filled Conductive Polymer Composites
- 2022Swelling of composite microgels with soft cores and thermo-responsive shellscitations
- 2021Mechanical and microstructural characterization of poly(N-isopropylacrylamide) hydrogels and its nanocompositescitations
- 2021Structure–property relations in linear viscoelasticity of supramolecular hydrogelscitations
- 2020Thermo-mechanical behavior of elastomers with dynamic covalent bondscitations
- 2020Modeling the elastic response of polymer foams at finite deformationscitations
- 2020Modeling electrical conductivity of polymer nanocomposites with aggregated fillercitations
- 2020Tension–compression asymmetry in the mechanical response of hydrogelscitations
- 2020Modeling dielectric permittivity of polymer composites at microwave frequenciescitations
- 2020The effect of porosity on elastic moduli of polymer foamscitations
- 2020Modeling dielectric permittivity of polymer composites filled with transition metal dichalcogenide nanoparticlescitations
- 2020Electromagnetic properties and EMI shielding effectiveness of polymer composites reinforced with ferromagnetic particles at microwave frequenciescitations
- 2020Micromechanical modeling of barrier properties of polymer nanocompositescitations
- 2019Thermal conductivity of highly filled polymer nanocompositescitations
- 2018Double-network gels with dynamic bonds under multi-cycle deformationcitations
- 2018Mechanical response of double-network gels with dynamic bonds under multi-cycle deformationcitations
- 2018Nanocomposite Gels with Permanent and Transient Junctions under Cyclic Loadingcitations
- 2018A Novel Bioresidue to Compatibilize Sodium Montmorillonite and Linear Low Density Polyethylenecitations
- 2018Modeling the non-isothermal viscoelastic response of glassy polymerscitations
- 2018Time-dependent response of hydrogels under multiaxial deformation accompanied by swellingcitations
- 2018Multi-cycle deformation of supramolecular elastomerscitations
- 2014Polypropylene/organoclay/SEBS nanocomposites with toughness-stiffness propertiescitations
- 2013Stress–strain relations for hydrogels under multiaxial deformationcitations
- 2013Compatibilizing agents influence on mechanical properties of PP/clay nanocomposites
- 2013Influence of Two Compatibilizers on Clay/PP Nanocomposites Propertiescitations
- 2013Time-Dependent Response of Polypropylene/Clay Nanocomposites Under Tension and Retractioncitations
- 2012Properties and Semicrystalline Structure Evolution of Polypropylene/ Montmorillonite Nanocomposites under Mechanical Loadcitations
- 2012Properties and Semicrystalline Structure Evolution of Polypropylene/Montmorillonite Nanocomposites under Mechanical Loadcitations
- 2012Mullins' effect in polymer/clay nanocomposites
- 2012Cyclic viscoelastoplasticity of polypropylene/nanoclay compositescitations
- 2012Effect of Multiple Extrusions on the Impact Properties of Polypropylene/Clay Nanocompositescitations
- 2012Cyclic viscoelasticity and viscoplasticity of polypropylene/clay nanocomposites
- 2011Nanomaterials in biomedical applications
- 2011Volume growth and viscoplasticity of polymer/clay nanocomposites
- 2010Polypropylene/clay nanocomposites
- 2009Viscoelasticity, Viscoplasticity, and Creep Failure of Polypropylene/Clay nanocompositescitations
- 2008Viscoelasticity of Polyethylene/Montmorillonite Nanocomposite Meltscitations
- 2008Thermo-viscoelastic Response of Nanocomposite Meltscitations
- 2008Pseudo-solid-like behavior of nanocomposite melts
- 2007Cyclic Deformation of Ternary Nanocompositescitations
- 2007Viscoelasticity and Viscoplasticity of Semicrystalline Polymers: Structure-property Relations for High-density Polyethylenecitations
- 2007Cyclic Viscoplasticity of High-density Polyethylene/Montmorillonite Clay Nanocompositecitations
- 2007Research in Advanced Nanocomposites eith Tailor-made Properties for Industrial Applications
- 2003Model for Anomalous Moisture Diffusion through a Polymer-Clay Nanocomposite
- 2003The effect of annealing on the elastoplastic and viscoelastic responses of isotactic polypropylenecitations
- 2002The effect of strain rate on the viscoplastic behavior of isotactic polypropylene at finite strainscitations
- 2002The nonlinear time-dependent response of isotactic polypropylenecitations
- 2002The elastoplastic response of and moisture diffusion through a vinyl ester resin-clay nanocomposite
- 2002A model for anomalous moisture diffusion through a polymer-clay nanocomposite
- 2002The nonlinear viscoelastic behavior of polypropylene
- 2001Calorimetric study of inorganic glass fibers
Places of action
Organizations | Location | People |
---|
article
Modeling electrical conductivity of polymer nanocomposites with aggregated filler
Abstract
A mean-field model is developed for the electrical conductivity of microcomposites and nanocomposites with polymer matrices. The model accounts for aggregation of filler into clusters (involving both conducting and nonconducting particles) and rearrangement of these clusters with the growth of volume fraction of filler (which leads to a reduction in tunneling resistivity and an increase in the number of bridging contacts between conducting particles). The governing equations involve five material constants with transparent physical meaning: the depolarization factor of clusters, volume fraction of polymer in clusters of filler, effective conductivity of an individual filler particle, and two coefficients characterizing an increase in the effective electrical conductivity of filler driven by the growth of bridging contacts between neighboring particles in clusters. Good agreement is demonstrated between results of simulation and experimental data on the electrical conductivity of epoxy resin reinforced with carbon black and graphite particles, poly(vinyl chloride) reinforced with copper and nickel particles, polypropylene loaded with spherical and spheroidal tin particles, poly(butylene terephthalate) reinforced with graphene nanosheets, and polypropylene loaded with multiwalled carbon nanotubes.