Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lye, S. W.

  • Google
  • 2
  • 3
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2010Optimization of compression molding of stand-alone Microlenses7citations
  • 2009Fabrication of a stand-alone polymer microlens7citations

Places of action

Chart of shared publication
Tor, S. B.
2 / 3 shared
Murukeshan, V. M.
2 / 4 shared
Loh, N. H.
2 / 2 shared
Chart of publication period
2010
2009

Co-Authors (by relevance)

  • Tor, S. B.
  • Murukeshan, V. M.
  • Loh, N. H.
OrganizationsLocationPeople

article

Optimization of compression molding of stand-alone Microlenses

  • Tor, S. B.
  • Murukeshan, V. M.
  • Loh, N. H.
  • Lye, S. W.
Abstract

<p>Hot compression molding is a promising method to fabricate polymer stand-alone microlenses. A reliable theoretical as well as statistical analysis is required for the optimization of the process to minimize the residual stresses and to predict the amount of springback to achieve a better replication of the mold profile. This article in this context focuses on the finite element simulation (FES), optimization as well as experimental validation of hot compression molding of polymer stand-alone microlenses. Three steps such as molding, cooling, and demolding, under different molding parameters, were analyzed using ABAQUS/standard solver and the results were compared with experimental results. Compression test and compression relaxation test have been conducted at different temperatures and strain rates to characterize the rheological behavior of material. Two material models, linear viscoelastic and hyperelastic-viscoelastic models, were developed and used for compression test simulations. Hyperelastic-viscoelastic model is found to predict the material behavior in low strain rates better and, thus, is used for the simulation of actual lens compression molding. Good agreement is found between the FES-predicted curve and the lens profile molded at different molding temperatures.</p>

Topics
  • impedance spectroscopy
  • polymer
  • simulation
  • compression test
  • relaxation test
  • compression molding