Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dixon, William

  • Google
  • 1
  • 5
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023"Take up to eight tablets per day"10citations

Places of action

Chart of shared publication
Lunt, Mark
1 / 2 shared
Nenadic, Goran
1 / 1 shared
Selby, David
1 / 1 shared
Jani, Meghna
1 / 1 shared
Yimer, Belay Birlie
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Lunt, Mark
  • Nenadic, Goran
  • Selby, David
  • Jani, Meghna
  • Yimer, Belay Birlie
OrganizationsLocationPeople

article

"Take up to eight tablets per day"

  • Lunt, Mark
  • Nenadic, Goran
  • Selby, David
  • Jani, Meghna
  • Yimer, Belay Birlie
  • Dixon, William
Abstract

Purpose: Routinely collected prescription data provides drug exposure information for pharmacoepidemiology, informing start/stop dates and dosage. Prescribing information includes structured data and unstructured free-text instructions which can include inherent variability, such as “one to two tablets up to four times a day”. Preparing drug exposure data from raw prescriptions to a research ready dataset is rarely fully reported, yet assumptions have considerable implications for pharmacoepidemiology. This may have bigger consequences for “pro re nata” (PRN) drugs. Our aim was, using a worked example of opioids and fracture risk, to examine the impact of incorporating narrative prescribing instructions and subsequent drug preparation assumptions on adverse event rates. <br/>Methods:R-packages for extracting free-text medication prescription instructions in a structured form (doseminer) and an algorithm for transparently processing drug exposure information (drugprepr) were developed. Clinical Practice Research Datalink GOLD was used to define a cohort of adult new opioid users without prior cancer. A retrospective cohort study was performed using data between 01/01/2017-31/07/2018. We tested the impact of varying drug preparation assumptions by estimating the risk of opioids on fracture risk using Cox proportional hazards models.<br/>Results: During the study window, 60,394 patients were identified with 190,754 opioid prescriptions. Free-text prescribing instruction variability, where there was flexibility in the number of tablets to be administered, was present in 42% prescriptions. Variations in the decisions made during preparing raw data for analysis led to marked differences impacting the event number (n=303-415) and person years of drug exposure (5,619-9,832). The distribution of hazard ratios as a function of the decisions ranged from 2.71 (95% CI: 2.31, 3.18) to 3.24 (2.76, 3.82). <br/>Conclusions: Assumptions made during the drug preparation process, especially for those with variability in prescription instructions, can impact results of subsequent risk estimates. The developed R packages can improve transparency related to drug preparation assumptions, in line with best practice advocated by international pharmacoepidemiology guidelines.

Topics
  • impedance spectroscopy
  • gold
  • chemical ionisation