Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

David, Eric

  • Google
  • 8
  • 49
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024Effect of environmental temperature and semi‐crystalline order on the toughening of polyamide 1010 by <scp>2D</scp> nanomaterialscitations
  • 2024Balancing thermal conductivity, dielectric, and tribological properties in polyamide 1010 with 2D nanomaterials1citations
  • 2019Deployment of 4P, the high-speed phenotyping data processing platform on the France Grilles infrastructure.citations
  • 2019Deployment of 4P, the high-speed phenotyping data processing platform on the France Grilles infrastructure.citations
  • 2019Dielectric properties of epoxy/POSS and PE/POSS systemscitations
  • 2018Electrical Breakdown Properties of Clay-Based LDPE Blends and Nanocomposites15citations
  • 2016Dielectric properties of epoxy/montmorillonite nanocomposites and nanostructured epoxy/SiO2/Montmorillonite Microcomposites3citations
  • 2016Functional Nanomaterials For Electric Power Industrycitations

Places of action

Chart of shared publication
Pinto, Gabriel M.
2 / 2 shared
Helal, Emna
2 / 2 shared
Macêdo Fechine, Guilhermino José
2 / 6 shared
Demarquette, Nicole
1 / 1 shared
Staffa, Lucas
1 / 1 shared
Vieira, Lúcia
1 / 2 shared
Hahn, Carolina
1 / 1 shared
Demarquette, Nicole R.
2 / 2 shared
Colombeau, Gallian
2 / 2 shared
Chapuis, Romain
2 / 2 shared
Thomas, Samuel
2 / 2 shared
Negre, Vincent
2 / 2 shared
Weiss, Marie
2 / 2 shared
Adam, Boris
2 / 2 shared
Tireau, Anne
2 / 2 shared
Tong, Anthony
2 / 2 shared
Neveu, Pascal
2 / 2 shared
Pansanel, Jérôme
2 / 2 shared
Moreau, Patrick
2 / 3 shared
Baret, Frédéric
2 / 3 shared
Burger, Philippe
1 / 1 shared
Andritsch, Thomas
2 / 70 shared
Fabiani, Davide
2 / 15 shared
Eesaee, Mostafa
1 / 1 shared
Coletti, Gianfranco
1 / 2 shared
Fina, Alberto
1 / 59 shared
Couderc, Hugues
1 / 2 shared
Guastavino, Francesco
1 / 4 shared
Thelakkaday, Abdul Salam
1 / 1 shared
Frechette, Michel
1 / 2 shared
Savoie, Sylvio
1 / 4 shared
Germano, A.
1 / 1 shared
Bergmann, I.
1 / 2 shared
Han, S. J.
1 / 1 shared
Shimizu, T.
1 / 3 shared
Englund, V.
1 / 1 shared
Allais, A.
1 / 2 shared
Frechette, M. F.
1 / 7 shared
Darques, M.
1 / 1 shared
Weidner, J.
1 / 1 shared
Cristiano, A.
1 / 1 shared
Tanaka, Toshikatsu
1 / 2 shared
Perrot, Fabrice
1 / 3 shared
Castellon, Jerome
1 / 1 shared
Häring, U.
1 / 1 shared
Vaughan, Alun S.
1 / 70 shared
Quirke, Nick
1 / 2 shared
Reed, Clive
1 / 2 shared
Sutton, Simon
1 / 2 shared
Chart of publication period
2024
2019
2018
2016

Co-Authors (by relevance)

  • Pinto, Gabriel M.
  • Helal, Emna
  • Macêdo Fechine, Guilhermino José
  • Demarquette, Nicole
  • Staffa, Lucas
  • Vieira, Lúcia
  • Hahn, Carolina
  • Demarquette, Nicole R.
  • Colombeau, Gallian
  • Chapuis, Romain
  • Thomas, Samuel
  • Negre, Vincent
  • Weiss, Marie
  • Adam, Boris
  • Tireau, Anne
  • Tong, Anthony
  • Neveu, Pascal
  • Pansanel, Jérôme
  • Moreau, Patrick
  • Baret, Frédéric
  • Burger, Philippe
  • Andritsch, Thomas
  • Fabiani, Davide
  • Eesaee, Mostafa
  • Coletti, Gianfranco
  • Fina, Alberto
  • Couderc, Hugues
  • Guastavino, Francesco
  • Thelakkaday, Abdul Salam
  • Frechette, Michel
  • Savoie, Sylvio
  • Germano, A.
  • Bergmann, I.
  • Han, S. J.
  • Shimizu, T.
  • Englund, V.
  • Allais, A.
  • Frechette, M. F.
  • Darques, M.
  • Weidner, J.
  • Cristiano, A.
  • Tanaka, Toshikatsu
  • Perrot, Fabrice
  • Castellon, Jerome
  • Häring, U.
  • Vaughan, Alun S.
  • Quirke, Nick
  • Reed, Clive
  • Sutton, Simon
OrganizationsLocationPeople

article

Effect of environmental temperature and semi‐crystalline order on the toughening of polyamide 1010 by <scp>2D</scp> nanomaterials

  • Pinto, Gabriel M.
  • Helal, Emna
  • David, Eric
  • Macêdo Fechine, Guilhermino José
  • Demarquette, Nicole
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:label/><jats:p>By incorporating nanomaterials into polymer matrices, nanocomposites can be produced with enhanced properties, combining the ease of processing thermoplastics with the superior physical characteristics of nanoparticles. In this study, fully bio‐based polyamide 1010 was used as the polymer matrix, with graphene oxide (GO), hexagonal‐boron nitride (h‐BN), and molybdenum disulfide (MoS<jats:sub>2</jats:sub>), both individually and in hybrids, serving as fillers. The tensile behavior of these nanocomposites was evaluated at room temperature and −40 °C, along with their morphology and microstructure. Results showed that the nanomaterials slightly shifted the polymer's crystallization temperature upward, indicating a small nucleating effect, but also hindered the development of crystalline domains, reducing the crystallization kinetics. Despite no change in the final crystalline form, nanocomposites with h‐BN and MoS<jats:sub>2</jats:sub> showed lower microstructural order as evidenced by XRD. Regarding tensile behavior, GO provided the greatest toughening at room temperature due to its larger lateral dimensions and good chemical affinity with the matrix. However, at low temperatures, h‐BN‐based nanocomposites maintained the toughening effect better than GO‐based ones. This can be attributed to the lower order of the polymer's semi‐crystalline structure promoted by h‐BN, allowing greater energy dissipation. Surprisingly, hybrid fillers did not exhibit synergistic effects, with one nanomaterial hampering the effect of the other. However, SEM analysis indicated that the fracture mechanisms of the nanocomposites remained unchanged from the neat polymer, which makes them interesting options for applications that require desirable mechanical properties at a wide temperature range.</jats:p></jats:sec><jats:sec><jats:title>Highlights</jats:title><jats:p><jats:list list-type="bullet"> <jats:list-item><jats:p>GO showed the best toughening of polyamide 1010 at room temperature.</jats:p></jats:list-item> <jats:list-item><jats:p>Toughening at room temperature is mainly due to nanomaterials physical traits.</jats:p></jats:list-item> <jats:list-item><jats:p>Most nanofillers lowered polyamide's overall microstructural order.</jats:p></jats:list-item> <jats:list-item><jats:p>Toughening at −40 °C is mainly due to lower microstructural order.</jats:p></jats:list-item> </jats:list></jats:p></jats:sec>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • microstructure
  • molybdenum
  • scanning electron microscopy
  • x-ray diffraction
  • nitride
  • Boron
  • thermoplastic
  • size-exclusion chromatography
  • crystallization
  • crystallization temperature