Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kumar, Siddharth

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Exploring the filler morphology and temperature‐dependent compressive response of glass‐filled epoxy composites: Insights from experiments and viscoplastic simulationscitations

Places of action

Chart of shared publication
Rozycki, Patrick
1 / 19 shared
Sahay, Saurav Ranjan
1 / 1 shared
Singh, Sarthak S.
1 / 3 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Rozycki, Patrick
  • Sahay, Saurav Ranjan
  • Singh, Sarthak S.
OrganizationsLocationPeople

article

Exploring the filler morphology and temperature‐dependent compressive response of glass‐filled epoxy composites: Insights from experiments and viscoplastic simulations

  • Kumar, Siddharth
  • Rozycki, Patrick
  • Sahay, Saurav Ranjan
  • Singh, Sarthak S.
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:label/><jats:p>This study aims to improve the compressive strength of epoxy at operating temperatures below the glass transition temperature by introducing micron‐sized spherical and milled glass fillers at varying volume fractions. Test specimens were prepared by mixing spherical and milled fillers up to 20% and 15% volume fractions. The room temperature (27°C) results showed that 15% and 10% volume fractions of spherical and milled filler‐reinforced epoxy composites, respectively, exhibited the highest stress‐bearing ability among their respective filler volume fractions and hence were further tested at 45°C and 60°C. 15% spherical and 10% milled fillers enhanced epoxy's yield strength from 103 MPa to 111 MPa and 123 MPa at 27°C and from 67 MPa to 73 MPa and 80 MPa at 60°C. Scanning electron microscopic imaging revealed matrix cracking and filler breakage as the primary failure mechanisms at ambient temperature, while matrix softening at 60°C caused filler‐matrix debonding to dominate. The Three‐Network viscoplastic model was used as matrix property in ABAQUS to simulate the representative volume elements reinforced with milled and spherical fillers at mentioned temperatures. The modulus, yield, and strain softening stresses for both filler‐reinforced epoxy composites are well predicted by the simulations. Simulations revealed that milled fibers endure higher compressive stress than spherical particles at the given temperatures, although matrix stress remains almost the same.</jats:p></jats:sec><jats:sec><jats:title>Highlights</jats:title><jats:p><jats:list list-type="bullet"> <jats:list-item><jats:p>Milled fiber epoxy composites exhibit higher yield strength than spherical ones.</jats:p></jats:list-item> <jats:list-item><jats:p>10% milled fiber endures the highest strength among all the fillers used.</jats:p></jats:list-item> <jats:list-item><jats:p>Matrix and filler breakages are witnessed at ambient temperature.</jats:p></jats:list-item> <jats:list-item><jats:p>Filler‐matrix debonding dominates at elevated temperature.</jats:p></jats:list-item> <jats:list-item><jats:p>Three‐Network model captures well the milled and spherical epoxy composite's experimental data.</jats:p></jats:list-item> </jats:list></jats:p></jats:sec>

Topics
  • experiment
  • simulation
  • glass
  • glass
  • strength
  • composite
  • glass transition temperature
  • yield strength
  • size-exclusion chromatography