Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Srisorrchart, Ukrit

  • Google
  • 1
  • 3
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Biocompatibility, thermal and mechanical properties of glass fiber‐reinforced polybenzoxazine composites as a potential new endodontic post3citations

Places of action

Chart of shared publication
Jubsilp, Chanchira
1 / 4 shared
Karagiannidis, Panagiotis
1 / 22 shared
Mora, Phattarin
1 / 4 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Jubsilp, Chanchira
  • Karagiannidis, Panagiotis
  • Mora, Phattarin
OrganizationsLocationPeople

article

Biocompatibility, thermal and mechanical properties of glass fiber‐reinforced polybenzoxazine composites as a potential new endodontic post

  • Jubsilp, Chanchira
  • Karagiannidis, Panagiotis
  • Mora, Phattarin
  • Srisorrchart, Ukrit
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:label/><jats:p>A novel dental fiber post from glass fiber‐reinforced polybenzoxazine (PBZ) composites was developed in this work. The essential properties, that is, chemical characteristics, thermal and biological properties of the PBZ composites were investigated for various glass fiber loadings (10.5, 23.7, 41.2 and 65.1 vol%). Finite element analysis (FEA) was also utilized to observe mechanical behaviors of the tooth model repaired with PBZ composite posts compared to a natural tooth model. The findings reveal that for the fiber‐reinforced PBZ composites not only their thermal properties were significantly improved, but they also showed enhanced cytocompatibility; we found a coefficient of thermal expansion of 12.8 ppm/°C and cell viability of 91.55 for the 65.1 vol% glass fiber‐reinforced PBZ composite. Moreover, samples reinforced with higher glass fiber loadings effectively resulted in the reduction of stress distribution in dentin observed from FEA suggesting protection againt root fractures. Restoration using the PBZ composite post showed the same stress patterns in the dentin‐composite resin‐post interface of the repaired tooth as in the natural tooth model. The results revealed that the glass fiber‐reinforced PBZ composites possess good thermal properties and mechanical behaviors which renders them suitable candidates for biocompatible dental materials.</jats:p></jats:sec><jats:sec><jats:title>Highlights</jats:title><jats:p><jats:list list-type="bullet"> <jats:list-item><jats:p>The glass fiber/polybenzoxazine (GF/PBZ) composites had nontoxic properties as evidenced through cell viability, growth and morphology studies.</jats:p></jats:list-item> <jats:list-item><jats:p>The thermal expansion of the GF/PBZ composite was similar to that of dentin, promoting adaptation at the dentin‐post interface.</jats:p></jats:list-item> <jats:list-item><jats:p>Mechanical behaviors evaluated by FEA of tooth model restored with GF/PBZ composite post were similar to those restored with commercial glass fiber post.</jats:p></jats:list-item> <jats:list-item><jats:p>The biocompatible GF/PBZ composite with good thermal and mechanical properties is a promising new candidate material as dental fiber post.</jats:p></jats:list-item> </jats:list></jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • glass
  • glass
  • composite
  • thermal expansion
  • resin
  • size-exclusion chromatography
  • finite element analysis
  • biocompatibility