Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ureña, A.

  • Google
  • 9
  • 17
  • 786

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024W-EUROFER97 brazed joints using Ag, Au, and Cu-based fillers for energy applications: A microstructural and mechanical study1citations
  • 2024W-EUROFER97 brazed joints using Ag, Au, and Cu-based fillers for energy applications: A microstructural and mechanical studycitations
  • 2024Insights from dispersion in carbon nanotubes‐based poly(vinylidene fluoride‐co‐hexafluoropropylene) wearable sensors via solvent castingcitations
  • 2023Modifications induced in photocuring of Bis- GMA/TEGDMA by the addition of graphene nanoplatelets for 3D printable electrically conductive nanocomposites15citations
  • 2023Numerical and experimental development of cupronickel filler brazed joints for divertor and first wall components in DEMO fusion reactorcitations
  • 2020Development of a brazing procedure to join W-2Y2O3 and W-1TiC PIMmaterials to Eurofe2citations
  • 2013Recent progress in research on tungsten materials for nuclear fusion applications in Europe687citations
  • 2011Improving the flexural and thermomechanical properties of amino-functionalized carbon nanotube/epoxy composites by using a pre-curing treatment69citations
  • 2010The Curing Process of Epoxy/Amino-Functionalized MWCNTs: Calorimetry, Molecular Modelling, and Electron Microscopy12citations

Places of action

Chart of shared publication
Izaguirre, I.
3 / 4 shared
Sánchez, M.
7 / 16 shared
Carreras, J.
2 / 2 shared
Díaz-Mena, V.
3 / 3 shared
Prado, J. De
3 / 3 shared
Rieth, M.
4 / 42 shared
De Prado, J.
1 / 1 shared
Sánchezromate, Xoan F.
1 / 1 shared
Mena, Víctor Díaz
1 / 1 shared
Moriche Tirado, Rocío
1 / 6 shared
Reigosa, L.
1 / 1 shared
Artigas, J.
1 / 1 shared
G., Prolongo S.
1 / 1 shared
Roldán, M.
1 / 2 shared
Antusch, S.
2 / 28 shared
Gude, M. R.
2 / 2 shared
Prolongo, S. G.
2 / 6 shared
Chart of publication period
2024
2023
2020
2013
2011
2010

Co-Authors (by relevance)

  • Izaguirre, I.
  • Sánchez, M.
  • Carreras, J.
  • Díaz-Mena, V.
  • Prado, J. De
  • Rieth, M.
  • De Prado, J.
  • Sánchezromate, Xoan F.
  • Mena, Víctor Díaz
  • Moriche Tirado, Rocío
  • Reigosa, L.
  • Artigas, J.
  • G., Prolongo S.
  • Roldán, M.
  • Antusch, S.
  • Gude, M. R.
  • Prolongo, S. G.
OrganizationsLocationPeople

article

Insights from dispersion in carbon nanotubes‐based poly(vinylidene fluoride‐co‐hexafluoropropylene) wearable sensors via solvent casting

  • Sánchez, M.
  • Sánchezromate, Xoan F.
  • Ureña, A.
  • Mena, Víctor Díaz
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:label/><jats:p>Flexible sensors, made of PVDF‐HFP reinforced with carbon nanotubes (CNTs), are manufactured by solvent casting. More specifically, the effect of evaporation temperature and sonication time is explored. It is seen that two effects govern the dispersion of CNT: the sedimentation half‐time, and the breakage induced by the ultrasonication process. In this regard, it is found that 60°C is an optimum evaporation temperature to reach the highest value of electrical conductivity, since it offers a good balance between these effects, leading to the creation of a more efficient electrical network. This is also confirmed by the AC analysis, where these samples show the highest characteristic frequencies. The electromechanical results show a greater dependency on evaporation temperature for low sonication times, as the breakage induced by an ultrasonic process is not so pronounced and, therefore, the sedimentation effect plays a more dominant role. In addition, cycling tests show robust electromechanical response with cycling, and creep tests prove good electrical response of the sensors, less than 200 ms in some cases. Finally, proof of concept testing of wrist, shoulder, and neck monitoring highlights the potential of the proposed materials for sensing applications.</jats:p></jats:sec><jats:sec><jats:title>Highlights</jats:title><jats:p><jats:list list-type="bullet"> <jats:list-item><jats:p>PVDF‐HFP/CNT nanocomposite strain sensors via solvent casting are proposed.</jats:p></jats:list-item> <jats:list-item><jats:p>The effect of evaporation temperature and sonication time is studied.</jats:p></jats:list-item> <jats:list-item><jats:p>DC and AC conductivities were analyzed and modeled via an equivalent circuit.</jats:p></jats:list-item> <jats:list-item><jats:p>An outstanding Gauge Factor of 86.30 × 10<jats:sup>4</jats:sup> is achieved at 95% of strain level.</jats:p></jats:list-item> <jats:list-item><jats:p>Two proof‐of‐concepts of medium and large movements are successfully achieved.</jats:p></jats:list-item> </jats:list></jats:p></jats:sec>

Topics
  • nanocomposite
  • impedance spectroscopy
  • dispersion
  • Carbon
  • nanotube
  • laser emission spectroscopy
  • mass spectrometry
  • ultrasonic
  • solvent casting
  • casting
  • size-exclusion chromatography
  • electrical conductivity
  • evaporation
  • creep
  • creep test
  • ultrasonication