Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rizwee, Mumtaz

  • Google
  • 1
  • 3
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Tuning thermal and structural properties of nano‐filled <scp>PDMS</scp> elastomer2citations

Places of action

Chart of shared publication
Kumar, Rahul
1 / 8 shared
Mandal, Swaroop Kumar
1 / 1 shared
Kumar, Deepak
1 / 17 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Kumar, Rahul
  • Mandal, Swaroop Kumar
  • Kumar, Deepak
OrganizationsLocationPeople

article

Tuning thermal and structural properties of nano‐filled <scp>PDMS</scp> elastomer

  • Rizwee, Mumtaz
  • Kumar, Rahul
  • Mandal, Swaroop Kumar
  • Kumar, Deepak
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:label/><jats:p>Increasing the thermal stability and thermal conductivity of polydimethylsiloxane (PDMS) is a crucial issue for thermal applications. This paper focuses on enhancing PDMS's thermal and structural properties by incorporating nanocomposite into the PDMS matrix. An investigation of the impact of rGO‐CaCO<jats:sub>3</jats:sub> nanocomposite on the thermal and structural properties of PDMS was performed using Field Emission Scanning Electron Microscopy (FESEM), X‐ray diffraction (XRD), the thermogravimetric analysis and differential thermal analysis (TGA‐DTA), and thermal analyzer tests. It was observed that PDMS doped with rGO‐CaCO<jats:sub>3</jats:sub> nanocomposite shows better thermal stability, thermal conductivity, and higher crystallinity. The thermal stability was enhanced significantly by adding a 5% rGO‐CaCO<jats:sub>3</jats:sub> nanocomposite, and the initial and end degradation temperatures rose to 492°C and 605°C, respectively. The thermal conductivity of pure PDMS is approximately 0.17 W/mK, whereas a conductive elastomer filled with 5% rGO‐CaCO<jats:sub>3</jats:sub> nanocomposite exhibits a thermal conductivity of 0.44 W/mK at a temperature of 20°C. In contrast, the thermal diffusivity is enhanced from 0.13 mm<jats:sup>2</jats:sup>/s to 0.366 mm<jats:sup>2</jats:sup>/s. Additionally, the Fourier Transform Infra‐Red (FTIR) spectrum at 1411 cm<jats:sup>−1</jats:sup> becomes sharp and noisy, and an additional peak arises at 1398 cm<jats:sup>−1</jats:sup>, corresponding to the vibrational rocking of the CC bond and COC bond in CaCO<jats:sub>3</jats:sub> and rGO.</jats:p></jats:sec><jats:sec><jats:title>Highlights</jats:title><jats:p><jats:list list-type="bullet"> <jats:list-item><jats:p>The manuscript focuses on the development of conductive elastomer by incorporating rGO‐CaCO<jats:sub>3</jats:sub> doped and its effect on the morphology, structure, and thermal properties of PDMS.</jats:p></jats:list-item> <jats:list-item><jats:p>The variation in peak intensity observed in XRD attributed to disparities in the crystalline structure of PDMS due to the inclusion of nanocomposite.</jats:p></jats:list-item> <jats:list-item><jats:p>The thermal degradation range is observed to shift toward the upper end. The degradation temperature at the beginning and end of the process is observed to move to 492°C and 605°C, respectively, upon introducing a 5% rGO‐CaCO<jats:sub>3</jats:sub> nanocomposite.</jats:p></jats:list-item> <jats:list-item><jats:p>The addition of 5% rGO‐CaCO<jats:sub>3</jats:sub> filled conductive elastomers shows a significant improvement of approximately 2.6 times in heat conductivity than bare PDMS.</jats:p></jats:list-item> </jats:list></jats:p></jats:sec>

Topics
  • nanocomposite
  • impedance spectroscopy
  • morphology
  • inclusion
  • scanning electron microscopy
  • x-ray diffraction
  • thermogravimetry
  • size-exclusion chromatography
  • diffusivity
  • thermal conductivity
  • crystallinity
  • differential thermal analysis
  • elastomer
  • degradation temperature