Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kumar, Rahul

  • Google
  • 8
  • 37
  • 27

University of Ljubljana

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024Structural analysis of selective laser melted copper-tin alloy3citations
  • 2024Impact of variations in the molarity of sodium hydroxide on metakaolin-ground granular blast-furnace slag-based geopolymer concrete1citations
  • 2024Tuning thermal and structural properties of nano‐filled <scp>PDMS</scp> elastomer2citations
  • 2023Improvement in Corrosion Performance of ECAPed AZ80/91 Mg Alloys Using SS316 HVOF Coating2citations
  • 2023Development and study of ultrasonic immersion testing system for industrial and metrological application4citations
  • 2021Functionally Gradient Ti6Al4V-TiB Composite Produced by Spark Plasma Sintering3citations
  • 2020Optical fibre thermometry using ratiometric green emission of an upconverting nanoparticle- polydimethylsiloxane composite12citations
  • 2015Emotion Recognition Using Facial Expressioncitations

Places of action

Chart of shared publication
Karimi, Javad
1 / 4 shared
Hussain, Abrar
1 / 2 shared
Rahmani, Ramin
1 / 14 shared
Abrantes, João C. C.
1 / 1 shared
Couto, Rúben
1 / 1 shared
Afonso, Alexandre M.
1 / 1 shared
Lopes, Sérgio I.
1 / 1 shared
Maurya, Himanshu Singh
1 / 1 shared
Resende, Pedro R.
1 / 1 shared
Singh, Rajwinder
1 / 3 shared
Patel, Mahesh
1 / 2 shared
Rizwee, Mumtaz
1 / 1 shared
Mandal, Swaroop Kumar
1 / 1 shared
Kumar, Deepak
1 / 17 shared
Sharma, Priyaranjan
1 / 6 shared
Kumar, Ch Sateesh
1 / 4 shared
Anne, Gajanan
1 / 4 shared
Satapathi, Gnane Swarnadh
1 / 1 shared
Naik, Gajanan M.
1 / 1 shared
Fernandes, Filipe
1 / 26 shared
Pittala, Raj Kumar
1 / 2 shared
Dubey, P. K.
1 / 1 shared
Yadav, Sanjay
1 / 1 shared
Dhiman, Nitin
1 / 1 shared
Minasyan, Tatevik
1 / 3 shared
Hussainova, Irina
1 / 16 shared
Antonov, Maksim
1 / 17 shared
Liu, Le
1 / 1 shared
Ivanov, Roman
1 / 6 shared
Alwis, Lourdes S. M.
1 / 4 shared
Nguyen, T. Hien
1 / 2 shared
Grattan, Kenneth T. V.
1 / 2 shared
Binetti, Leonardo
1 / 2 shared
Sun, Tong
1 / 5 shared
Jaiswal, Shubam
1 / 1 shared
Kumar, Santosh
1 / 33 shared
Singh, Sanjay K.
1 / 2 shared
Chart of publication period
2024
2023
2021
2020
2015

Co-Authors (by relevance)

  • Karimi, Javad
  • Hussain, Abrar
  • Rahmani, Ramin
  • Abrantes, João C. C.
  • Couto, Rúben
  • Afonso, Alexandre M.
  • Lopes, Sérgio I.
  • Maurya, Himanshu Singh
  • Resende, Pedro R.
  • Singh, Rajwinder
  • Patel, Mahesh
  • Rizwee, Mumtaz
  • Mandal, Swaroop Kumar
  • Kumar, Deepak
  • Sharma, Priyaranjan
  • Kumar, Ch Sateesh
  • Anne, Gajanan
  • Satapathi, Gnane Swarnadh
  • Naik, Gajanan M.
  • Fernandes, Filipe
  • Pittala, Raj Kumar
  • Dubey, P. K.
  • Yadav, Sanjay
  • Dhiman, Nitin
  • Minasyan, Tatevik
  • Hussainova, Irina
  • Antonov, Maksim
  • Liu, Le
  • Ivanov, Roman
  • Alwis, Lourdes S. M.
  • Nguyen, T. Hien
  • Grattan, Kenneth T. V.
  • Binetti, Leonardo
  • Sun, Tong
  • Jaiswal, Shubam
  • Kumar, Santosh
  • Singh, Sanjay K.
OrganizationsLocationPeople

article

Tuning thermal and structural properties of nano‐filled <scp>PDMS</scp> elastomer

  • Rizwee, Mumtaz
  • Kumar, Rahul
  • Mandal, Swaroop Kumar
  • Kumar, Deepak
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:label/><jats:p>Increasing the thermal stability and thermal conductivity of polydimethylsiloxane (PDMS) is a crucial issue for thermal applications. This paper focuses on enhancing PDMS's thermal and structural properties by incorporating nanocomposite into the PDMS matrix. An investigation of the impact of rGO‐CaCO<jats:sub>3</jats:sub> nanocomposite on the thermal and structural properties of PDMS was performed using Field Emission Scanning Electron Microscopy (FESEM), X‐ray diffraction (XRD), the thermogravimetric analysis and differential thermal analysis (TGA‐DTA), and thermal analyzer tests. It was observed that PDMS doped with rGO‐CaCO<jats:sub>3</jats:sub> nanocomposite shows better thermal stability, thermal conductivity, and higher crystallinity. The thermal stability was enhanced significantly by adding a 5% rGO‐CaCO<jats:sub>3</jats:sub> nanocomposite, and the initial and end degradation temperatures rose to 492°C and 605°C, respectively. The thermal conductivity of pure PDMS is approximately 0.17 W/mK, whereas a conductive elastomer filled with 5% rGO‐CaCO<jats:sub>3</jats:sub> nanocomposite exhibits a thermal conductivity of 0.44 W/mK at a temperature of 20°C. In contrast, the thermal diffusivity is enhanced from 0.13 mm<jats:sup>2</jats:sup>/s to 0.366 mm<jats:sup>2</jats:sup>/s. Additionally, the Fourier Transform Infra‐Red (FTIR) spectrum at 1411 cm<jats:sup>−1</jats:sup> becomes sharp and noisy, and an additional peak arises at 1398 cm<jats:sup>−1</jats:sup>, corresponding to the vibrational rocking of the CC bond and COC bond in CaCO<jats:sub>3</jats:sub> and rGO.</jats:p></jats:sec><jats:sec><jats:title>Highlights</jats:title><jats:p><jats:list list-type="bullet"> <jats:list-item><jats:p>The manuscript focuses on the development of conductive elastomer by incorporating rGO‐CaCO<jats:sub>3</jats:sub> doped and its effect on the morphology, structure, and thermal properties of PDMS.</jats:p></jats:list-item> <jats:list-item><jats:p>The variation in peak intensity observed in XRD attributed to disparities in the crystalline structure of PDMS due to the inclusion of nanocomposite.</jats:p></jats:list-item> <jats:list-item><jats:p>The thermal degradation range is observed to shift toward the upper end. The degradation temperature at the beginning and end of the process is observed to move to 492°C and 605°C, respectively, upon introducing a 5% rGO‐CaCO<jats:sub>3</jats:sub> nanocomposite.</jats:p></jats:list-item> <jats:list-item><jats:p>The addition of 5% rGO‐CaCO<jats:sub>3</jats:sub> filled conductive elastomers shows a significant improvement of approximately 2.6 times in heat conductivity than bare PDMS.</jats:p></jats:list-item> </jats:list></jats:p></jats:sec>

Topics
  • nanocomposite
  • impedance spectroscopy
  • morphology
  • inclusion
  • scanning electron microscopy
  • x-ray diffraction
  • thermogravimetry
  • size-exclusion chromatography
  • diffusivity
  • thermal conductivity
  • crystallinity
  • differential thermal analysis
  • elastomer
  • degradation temperature