People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ur Rehman Siddiqi, Muftooh
Aston University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2024Development and characterization of kevlar and glass fibers reinforced epoxy/vinyl ester hybrid resin compositescitations
- 2020Influence of electron beam oscillation patterns on the microstructure, texture, residual stress and mechanical properties of Ti-5Al-2.5Sn alloy weldmentscitations
- 2020Multi-Response Optimization of Tensile Creep Behavior of PLA 3D Printed Parts Using Categorical Response Surface Methodologycitations
Places of action
Organizations | Location | People |
---|
article
Development and characterization of kevlar and glass fibers reinforced epoxy/vinyl ester hybrid resin composites
Abstract
This research investigates the influence of kevlar and glass fiber reinforcements on the mechanical and thermal properties of epoxy/vinyl ester (hybrid resin) composite. The hybrid resin was synthesized by achieving an interpenetrating network between epoxy and vinyl ester. The composites were characterized using tensile, flexural, impact, and thermo‐gravimetric analysis (TGA). Scanning electron microscopy was employed to analyze surface morphology whereas Fourier‐Transformation Infrared Spectroscopy (FT‐IR) was used to investigate the possible interaction between the constituents of the composites. The findings have shown a notable improvement in the mechanical properties after the hybridization of the resin. For reference, the tensile strength of glass/hybrid resin and kevlar/hybrid resin composites were observed to increase by 8.33% and 23.65%, as compared to glass/epoxy and kevlar epoxy composites respectively, whereas, the bending strength of these composites was improved by 8.36% and 30.61%, respectively. TGA also showed an enhanced thermal stability of the hybrid resin‐based composites. Such improvements are noticed due to multi‐resin incorporation (the oxirane group of epoxy reacts with the hydroxyl group of vinyl ester), confirmed by the FTIR, TGA, and morphological analysis. This study signifies that the proposed hybrid composites are better in terms of strength and modulus relative to conventional metallic materials.