Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nituica, Mihaela

  • Google
  • 3
  • 16
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Composites based on polymeric blends reinforced with TiO2 modified aramid fibers5citations
  • 2020New Materials Based on Ethylene Propylene Diene Terpolymer and Hemp Fibers Obtained by Green Reactive Processing10citations
  • 2020Dolomite surface modification with titanium and silicon precursors and its morphostructural and thermal characterisation4citations

Places of action

Chart of shared publication
Pelin, Cristinaelisabeta
1 / 1 shared
Georgescu, Mihai
3 / 5 shared
Pelin, George
1 / 2 shared
Stefan, Adriana
1 / 2 shared
Sonmez, Maria
2 / 5 shared
Gurau, Dana
2 / 2 shared
Ignat, Madalina
1 / 1 shared
Stelescu, Maria Daniela
3 / 9 shared
Manaila, Elena
1 / 8 shared
Alexandrescu, Laurentia
1 / 3 shared
Ficai, Anton
1 / 9 shared
Ficai, Denisa
1 / 5 shared
Juganaru, Mircea
1 / 1 shared
Melinescu, Alina
1 / 1 shared
Marin, Minodora
1 / 1 shared
Oprea, Ovidiu
1 / 3 shared
Chart of publication period
2024
2020

Co-Authors (by relevance)

  • Pelin, Cristinaelisabeta
  • Georgescu, Mihai
  • Pelin, George
  • Stefan, Adriana
  • Sonmez, Maria
  • Gurau, Dana
  • Ignat, Madalina
  • Stelescu, Maria Daniela
  • Manaila, Elena
  • Alexandrescu, Laurentia
  • Ficai, Anton
  • Ficai, Denisa
  • Juganaru, Mircea
  • Melinescu, Alina
  • Marin, Minodora
  • Oprea, Ovidiu
OrganizationsLocationPeople

article

Composites based on polymeric blends reinforced with TiO2 modified aramid fibers

  • Pelin, Cristinaelisabeta
  • Georgescu, Mihai
  • Pelin, George
  • Stefan, Adriana
  • Nituica, Mihaela
  • Sonmez, Maria
  • Gurau, Dana
  • Ignat, Madalina
  • Stelescu, Maria Daniela
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:label /><jats:p>The paper presents a study on composites based on 50:50 (PP:LLPE‐g‐MA) reinforced with 0.5, 1, and 2 wt% aramid fibers unmodified/modified with TiO<jats:sub>2</jats:sub>, processed by melt compounding. Micronic aramid fibers were acetone washed to remove impurities and treated with Ti(IV)isopropoxide precursor via sol–gel method, adding microcellulose for TiO<jats:sub>2</jats:sub> particle dimension control. Composites were hot‐pressed into 4 mm‐thick plates for sampling and 0.5 mm‐thick sheets for thermoforming. All composites were successfully thermoformed, fibers‐based samples showing improved thermoforming ability without wrinkling. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Energy dispersive X‐ray spectroscopy (EDS) analysis confirmed the formation of TiO<jats:sub>2</jats:sub> particles on the fiber surface. Optical microscopy, SEM and FTIR analysis exhibit the fibers' strong embedment into the matrix due to physical interlocking, generating surface defect reduction. Water absorption decreased from 0.195% (control) to 0.075 and 0% for 1 TiO2 and 2 TiO2 samples, due to material compactization. Contact angles increased from 95.18° (Control) to 108° (1 TiO2) and 112.89° (2 TiO2). The highest flexural strength and modulus were exhibited by 1 TiO2 sample that increased by 44.88% and 47.6% compared to the control sample, due to higher intrinsic rigidity of fibers and TiO<jats:sub>2</jats:sub> modifying surface rugosity and phase interaction. The impact strength of the control sample improved by 139% compared to PP due to brittleness reduction, 1 TiO2 by 209% compared to PP, 29% compared to the control sample. The results and excellent thermoformability recommend the materials for encapsulation of electronic/expensive parts in automotive or drone applications, offering viable, facile, rapid, and cost‐effective solutions to easily replace damaged parts.</jats:p></jats:sec><jats:sec><jats:title>Highlights</jats:title><jats:p><jats:list list-type="bullet"> <jats:list-item><jats:p>Aramid fibers were successfully modified using isopropoxide precursor;</jats:p></jats:list-item> <jats:list-item><jats:p>Strong embedment of fibers in the polymer diminishes crack propagation/damage;</jats:p></jats:list-item> <jats:list-item><jats:p>Improved impact and bending properties and water contact angle;</jats:p></jats:list-item> <jats:list-item><jats:p>The composites showed a high ability to thermoform into complex shapes;</jats:p></jats:list-item> <jats:list-item><jats:p>Potential to replace non‐reusable materials as encapsulation solutions.</jats:p></jats:list-item> </jats:list></jats:p></jats:sec>

Topics
  • surface
  • polymer
  • scanning electron microscopy
  • melt
  • crack
  • strength
  • composite
  • flexural strength
  • Energy-dispersive X-ray spectroscopy
  • optical microscopy
  • size-exclusion chromatography
  • Fourier transform infrared spectroscopy