Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ost, Charles Antonio

  • Google
  • 2
  • 7
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Impact of graphene concentration on crystallinity, rheological, and mechanical characteristics of a polypropylene copolymer1citations
  • 2024Mechanical behavior of carbon/glass polypropylene hybrid composites1citations

Places of action

Chart of shared publication
Beltrami, Lilian Vr
1 / 1 shared
Zattera, Ademir J.
1 / 8 shared
Bortoli, Bruna Farias De
1 / 1 shared
Rego, Artur S. C.
1 / 1 shared
Luiz Ornaghi Júnior, Heitor
1 / 2 shared
Camargo, Monique Camille R.
1 / 1 shared
Zattera, Ademir José
1 / 3 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Beltrami, Lilian Vr
  • Zattera, Ademir J.
  • Bortoli, Bruna Farias De
  • Rego, Artur S. C.
  • Luiz Ornaghi Júnior, Heitor
  • Camargo, Monique Camille R.
  • Zattera, Ademir José
OrganizationsLocationPeople

article

Mechanical behavior of carbon/glass polypropylene hybrid composites

  • Ost, Charles Antonio
  • Bortoli, Bruna Farias De
  • Rego, Artur S. C.
  • Luiz Ornaghi Júnior, Heitor
  • Camargo, Monique Camille R.
  • Zattera, Ademir José
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:label/><jats:p>This research investigates the influence of graphene and some additives on the mechanical behavior of polypropylene (PP). Anhydride maleic coupling agent (MAPP), graphene nanoplatelets (GNPs), and glass fiber (GF) were incorporated into the polymer matrix. The incorporation of MAPP and/or GNP significantly improved the affinity between the PP matrix and fibers while altering the surface morphology. More than 60% of the fibers showed a dimension lower than 0.5 mm. The tensile strength increased from 27.45 to 41 MPa for the neat PP compared to one of the composites. The strength modulus varied from 0.5 to 0.9 GPa. Mechanical tests showed that the addition of MAPP improved the tensile toughness (from 27.45 to 41 N mm mm<jats:sup>−2</jats:sup>) by 49%, while the GF increased tensile strength, albeit reducing elongation at break. The dynamic mechanical thermal analysis uncovered distinct behavioral variations among fiber‐reinforced samples, particularly in modulus peak differences. In rheological assessment, the presence of GF notably increased viscosity within certain shear rate ranges (at 100 [1/s], the viscosity goes from 200 to 300 Pa s to neat PP for some composites). This research highlights how chosen additives can influence a PP homopolymer's properties, offering useful insights for practical material processing and design.</jats:p></jats:sec><jats:sec><jats:title>Highlights</jats:title><jats:p><jats:list list-type="bullet"> <jats:list-item><jats:p>MAPP and GNP can increase PP and glass fiber interfacial bonding.</jats:p></jats:list-item> <jats:list-item><jats:p>Glass fiber raises tensile strength and decreases elongation.</jats:p></jats:list-item> <jats:list-item><jats:p>Sample with just GNP has a rougher surface, implying better energy dissipation.</jats:p></jats:list-item> <jats:list-item><jats:p>Glass fiber raises viscosity in the observed shear rate ranges.</jats:p></jats:list-item> <jats:list-item><jats:p>DMA demonstrates that MAPP and GNP have an influence on energy dissipation.</jats:p></jats:list-item> </jats:list></jats:p></jats:sec>

Topics
  • surface
  • Carbon
  • glass
  • glass
  • strength
  • composite
  • thermal analysis
  • viscosity
  • tensile strength
  • size-exclusion chromatography
  • homopolymer