Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sathiyamurthy, S.

  • Google
  • 3
  • 10
  • 35

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024The effect of fiber stacking sequence on mechanical and morphological behavior of paddy straw/pineapple leaf fiber-reinforced ortho-laminated polyester hybrid composites12citations
  • 2024Integrating response surface methodology and machine learning for analyzing the unconventional machining properties of hybrid fiber‐reinforced composites21citations
  • 2022Tensile, Hardness, XRD and Surface Vonmises Stress of 316 L Stainless Steel Built by Wire Arc Additive Manufacturing (WAAM)2citations

Places of action

Chart of shared publication
Devi, P.
1 / 5 shared
Mech, Vinoth
2 / 2 shared
Ananthi, N.
1 / 1 shared
Saravanakumar, S.
1 / 5 shared
Senthilkumar, R.
1 / 1 shared
Vinoth, V.
1 / 1 shared
Vardhan, Harsh
1 / 2 shared
Prabhakaran, J.
1 / 1 shared
Sundaravignesh, S.
1 / 1 shared
Sanjeevi Prakash, K.
1 / 1 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Devi, P.
  • Mech, Vinoth
  • Ananthi, N.
  • Saravanakumar, S.
  • Senthilkumar, R.
  • Vinoth, V.
  • Vardhan, Harsh
  • Prabhakaran, J.
  • Sundaravignesh, S.
  • Sanjeevi Prakash, K.
OrganizationsLocationPeople

article

Integrating response surface methodology and machine learning for analyzing the unconventional machining properties of hybrid fiber‐reinforced composites

  • Sathiyamurthy, S.
  • Saravanakumar, S.
  • Mech, Vinoth
  • Senthilkumar, R.
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:label /><jats:p>The aim of this investigation was to delve into the impact of abrasive water jet machining (AWJM) process variables on the surface roughness (<jats:italic>R</jats:italic><jats:sub>a</jats:sub>) and kerf angle (<jats:italic>K</jats:italic><jats:sub>a</jats:sub>) of hybrid fiber‐reinforced polyester composites. Utilizing both response surface methodology (RSM) and artificial neural network (ANN) prediction models, the study sought to optimize the input parameters for abrasive water jet machining, specifically in the context of paddy straw and PALF‐reinforced polyester hybrid composites. The process parameters targeted for optimization included the abrasive flow rate, traverse rate, and standoff distance during AWJM. The investigation identified an optimal combination of AWJM parameters that effectively meets the practical requirements for machining hybrid fiber‐reinforced polyester composites. According to the RSM, the suggested optimal values for the process parameters are an abrasive flow rate set at 300 g/min, traverse speed at 110 mm/min, and standoff distance at 1 mm. The ANN exhibited robust predictive capabilities, achieving high <jats:italic>R</jats:italic><jats:sup>2</jats:sup> scores of 0.932 and 0.962 for surface roughness and kerf angle, respectively. To enhance the performance of abrasive water jet machining and minimize surface roughness and kerf angle, the researchers conducted an optimization of the process parameters. Subsequently, confirmation experiments were executed to validate the predictive model and fine‐tune the set of process parameters for practical application.</jats:p></jats:sec><jats:sec><jats:title>Highlights</jats:title><jats:p><jats:list list-type="bullet"> <jats:list-item><jats:p>Investigated AWJM impact on <jats:italic>R</jats:italic><jats:sub>a</jats:sub> value and kerf angle of hybrid composites.</jats:p></jats:list-item> <jats:list-item><jats:p>Used RSM and ANN models for parameter optimization in biocomposite.</jats:p></jats:list-item> <jats:list-item><jats:p>Optimal AWJM parameters: AFR (300 g/min), TS (110 mm/min), and SOD (1 mm).</jats:p></jats:list-item> <jats:list-item><jats:p>ANN showed strong predictions: <jats:italic>R</jats:italic><jats:sup>2</jats:sup> scores 0.932 (<jats:italic>R</jats:italic><jats:sub>a</jats:sub>) and 0.962 (<jats:italic>K</jats:italic><jats:sub>a</jats:sub>).</jats:p></jats:list-item> <jats:list-item><jats:p>Confirmation experiments validated the predictive model for applications.</jats:p></jats:list-item> </jats:list></jats:p></jats:sec>

Topics
  • surface
  • experiment
  • composite
  • size-exclusion chromatography
  • machine learning