Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Diaz-Garcia, Alvaro

  • Google
  • 1
  • 5
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Polymer‐based filaments with embedded magnetocaloric <scp>Ni‐Mn‐Ga</scp> Heusler alloy particles for additive manufacturing3citations

Places of action

Chart of shared publication
Franco, Victorino
1 / 4 shared
Morończyk, Bartosz
1 / 12 shared
Law, Jia Yan
1 / 10 shared
Wróblewski, Rafał
1 / 11 shared
Żrodowski, Łukasz
1 / 12 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Franco, Victorino
  • Morończyk, Bartosz
  • Law, Jia Yan
  • Wróblewski, Rafał
  • Żrodowski, Łukasz
OrganizationsLocationPeople

article

Polymer‐based filaments with embedded magnetocaloric <scp>Ni‐Mn‐Ga</scp> Heusler alloy particles for additive manufacturing

  • Franco, Victorino
  • Diaz-Garcia, Alvaro
  • Morończyk, Bartosz
  • Law, Jia Yan
  • Wróblewski, Rafał
  • Żrodowski, Łukasz
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:label /><jats:p>One important issue associated to magnetocaloric materials that hinders its technological application is the poor processability and structural integrity of those with the highest performance, usually intermetallics undergoing first‐order magnetic phase transitions. Additionally, the performance of these magnetocaloric materials highly depends on the structural stability of the magnetocaloric phase, which is, in many cases, very sensitive to temperature and mechanical processes. Additive manufacturing via the extrusion of polymer‐based composites is regarded as a promising way to overcome these issues. A recently presented manufacturing method of encapsulating functional fillers into polymer capsules has been used to produce a composite filament with a large load of magnetocaloric off‐stoichiometric Ni<jats:sub>2</jats:sub>MnGa Heusler alloy fillers with a uniform distribution throughout the polymer matrix as demonstrated by x‐ray tomography characterization. The incorporation of these metallic particles causes changes in the thermal behavior of the polymer as well as an increase in the flowability of the composite with respect to the polymer at the same temperature. The increased flowability of the composites found during manufacturing can be compensated by lowering the extrusion temperatures, making this technique even more convenient for preserving the filler properties, which is an important concern when additive manufacturing magnetocaloric materials. This is confirmed by the magnetic and magnetocaloric behavior of the composites, with responses proportional to the fraction of fillers.</jats:p></jats:sec><jats:sec><jats:title>Highlights</jats:title><jats:p><jats:list list-type="bullet"> <jats:list-item><jats:p>Ultrasonic‐atomization produces highly spherical Ni‐Mn‐Ga Heusler alloy particles.</jats:p></jats:list-item> <jats:list-item><jats:p>Ni‐Mn‐Ga filled polymer capsules allow a direct extrusion of composites for AM.</jats:p></jats:list-item> <jats:list-item><jats:p>X‐ray tomography shows uniform volumetric filler distribution within the filaments.</jats:p></jats:list-item> <jats:list-item><jats:p>Decreased viscosity of the matrix favors the lowering of the processing temperature.</jats:p></jats:list-item> <jats:list-item><jats:p>The low processing temperatures avoid altering the MCE of the alloy fillers.</jats:p></jats:list-item> </jats:list></jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • polymer
  • phase
  • extrusion
  • tomography
  • composite
  • viscosity
  • phase transition
  • ultrasonic
  • intermetallic
  • size-exclusion chromatography
  • additive manufacturing
  • atomization