Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rajkumar, K.

  • Google
  • 5
  • 21
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Effect of <i>Kigelia pinnata</i> biochar inclusion on mechanical and thermal properties of curtain climber fiber reinforced epoxide biocomposites9citations
  • 2024Energizing the Thermal Conductivity and Optical Performance of Salt Hydrate Phase Change Material Using Copper (II) Oxide Nano Additives for Sustainable Thermal Energy Storage4citations
  • 2023OPTIMIZATION OF WEAR STUDIES ON LASER CLADDED AZ61 MAGNESIUM ALLOY WITH NANO-TITANIUM DIOXIDE USING GREY RELATIONAL ANALYSIS4citations
  • 2021Push Out Bond Strength of a Glass Fibre Post to Root Dentine Pretreated with Proanthocyanidin and Phytosphingosine - An In Vitro Study.2citations
  • 2011High temperature resistance properties of NBR based polymer nanocompositescitations

Places of action

Chart of shared publication
Arun, A.
1 / 4 shared
Palaniyappan, Sabarinathan
1 / 4 shared
Suraparaju, Subbarama Kousik
1 / 1 shared
Ramasamy, Devarajan
1 / 2 shared
Namasivayam, Satesh
1 / 1 shared
Kadirgama, Kumaran
1 / 3 shared
Samykano, Mahendran
1 / 4 shared
Sofiah, A. G. N.
1 / 2 shared
Sundaraselvan, S.
1 / 2 shared
Balamurugan, T.
1 / 1 shared
Senthilkumar, N.
1 / 13 shared
Lv, Amirtharaj
1 / 1 shared
Sekar, M.
1 / 4 shared
Ardhra, J.
1 / 1 shared
Keerthivasan, A.
1 / 1 shared
Vidhya, S.
1 / 6 shared
Pazhanisamy, P.
1 / 1 shared
Jeyanthi, P.
1 / 1 shared
Chakraborty, S. K.
1 / 1 shared
Thavamani, P.
1 / 1 shared
Kumari, Nivashri
1 / 1 shared
Chart of publication period
2024
2023
2021
2011

Co-Authors (by relevance)

  • Arun, A.
  • Palaniyappan, Sabarinathan
  • Suraparaju, Subbarama Kousik
  • Ramasamy, Devarajan
  • Namasivayam, Satesh
  • Kadirgama, Kumaran
  • Samykano, Mahendran
  • Sofiah, A. G. N.
  • Sundaraselvan, S.
  • Balamurugan, T.
  • Senthilkumar, N.
  • Lv, Amirtharaj
  • Sekar, M.
  • Ardhra, J.
  • Keerthivasan, A.
  • Vidhya, S.
  • Pazhanisamy, P.
  • Jeyanthi, P.
  • Chakraborty, S. K.
  • Thavamani, P.
  • Kumari, Nivashri
OrganizationsLocationPeople

article

Effect of <i>Kigelia pinnata</i> biochar inclusion on mechanical and thermal properties of curtain climber fiber reinforced epoxide biocomposites

  • Arun, A.
  • Palaniyappan, Sabarinathan
  • Rajkumar, K.
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:label /><jats:p>This article explored the influence of curtain climber fiber and Biochar derived from <jats:italic>Kigelia pinnata</jats:italic> fruit fiber on a polyepoxide‐based composite material's thermal, mechanical, dielectric, and mechanical properties. Before commencing the composite production process, the surface of the curtain climber fiber underwent treatment with a solution consisting of 5% silane to enhance the bonding between the fiber and the matrix. The hand layup method and compression molding were used to produce the composite panels and tested according to the appropriate standards set by the ASTM. According to these findings, the mechanical properties of the composites were enhanced by adding 30% curtain climber fiber and 5% biochar. The load distribution on the fiber was consistent throughout. The composite's highest strength (EFB3) was 183 MPa, its modulus was 5.9 GPa, and its flexural strength and modulus were 216 MPa and 6.1 GPa, respectively. The impact intensity is 8 J, and the hardness value is 95 on the Shore D scale. In addition, the EFB3 had a maximum interlaminar shear strength of 35 MPa. According to the findings of the SEM surface analysis, the matrix molecules exhibit adhesion to the fiber, which indicates increased bonding. The thermal conductivity and dielectric properties were high for composite with higher biochar particle content. These waste biomass‐converted fruit fiber biochar and curtain climber industrial crop fiber epoxide composite materials may be utilized in a variety of sectors, including aerospace, automotive, household domestic product manufacturing, and defense sectors.</jats:p></jats:sec><jats:sec><jats:title>Highlights</jats:title><jats:p><jats:list list-type="bullet"> <jats:list-item><jats:p>Extraction and silane treatment of curtain climber fiber.</jats:p></jats:list-item> <jats:list-item><jats:p>Producing biochar from waste biomass <jats:italic>Kigelia pinnata</jats:italic> fiber.</jats:p></jats:list-item> <jats:list-item><jats:p>Fabrication of polyepoxide composite.</jats:p></jats:list-item> <jats:list-item><jats:p>Siloxane layer improves the strength.</jats:p></jats:list-item> <jats:list-item><jats:p>Biochar improves the properties of composites.</jats:p></jats:list-item> </jats:list></jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • surface
  • inclusion
  • scanning electron microscopy
  • extraction
  • strength
  • composite
  • flexural strength
  • hardness
  • size-exclusion chromatography
  • thermal conductivity
  • compression molding