Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Merazzo, Karla Marina Jaimes

  • Google
  • 1
  • 7
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Engineering the magnetic properties of acrylonitrile butadiene styrene‐based composites with magnetic nanoparticlescitations

Places of action

Chart of shared publication
Tubio, Carmen R.
1 / 23 shared
Manchado, Juan Carlos
1 / 2 shared
Costa, Pedro
1 / 36 shared
Murillo, Ramón Malet
1 / 1 shared
Díez, Ander García
1 / 7 shared
Pérez, Marc
1 / 3 shared
Lancerosmendez, Senentxu
1 / 14 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Tubio, Carmen R.
  • Manchado, Juan Carlos
  • Costa, Pedro
  • Murillo, Ramón Malet
  • Díez, Ander García
  • Pérez, Marc
  • Lancerosmendez, Senentxu
OrganizationsLocationPeople

article

Engineering the magnetic properties of acrylonitrile butadiene styrene‐based composites with magnetic nanoparticles

  • Merazzo, Karla Marina Jaimes
  • Tubio, Carmen R.
  • Manchado, Juan Carlos
  • Costa, Pedro
  • Murillo, Ramón Malet
  • Díez, Ander García
  • Pérez, Marc
  • Lancerosmendez, Senentxu
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:label /><jats:p>This work reports the engineering of the magnetic properties of composites based on acrylonitrile butadiene styrene (ABS) by the inclusion of different magnetic nanoparticles (MNP). ABS‐based composites with different MNP, including permalloy, Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>, CoFe<jats:sub>2</jats:sub>O<jats:sub>4,</jats:sub> Ni, and Co‐carbon coated, with a 10 wt% content have been prepared and their morphological, electric, thermal, magnetic, and mechanical properties evaluated. Films were processed by solvent casting under two different processing conditions, no magnetic field applied during solvent evaporations, and an out‐of‐plane magnetic field application. It is shown that ABS‐based composites preserve the magnetic properties of the filler, providing a simple way to tune the magnetic behavior in the polymer. The inclusion of permalloy, Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>, CoFe<jats:sub>2</jats:sub>O<jats:sub>4,</jats:sub> Ni, and Co‐carbon coated fillers, allow to obtain saturation magnetizations of 6.2, 4.1, 7.3, 3.7, 4.4, and 4.9 emu/g, respectively, and coercive fields of 88.5, 30.9, 128, 2529.8, 123.6, and 197.4 Oe, respectively. It was found that the mechanical properties of the composites depend on filler type and dimensions, maintaining the thermoplastic behavior of the matrix when the fillers are small (up to 40 nm) and losing it when the fillers are bigger (from 60 to 135 nm). Further, the breaking stress, elongation at break, and the Young's modulus are material dependent, showing higher values when the fillers are Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> and CoFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> and lower values when the fillers are permalloy, Ni, and Co‐carbon; for example, these values are the highest in the case of the ABS‐Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> composite with values of 28.7 MPa, 4.1%, and 1266.9 MPa, respectively, while ABS‐Co composite shows the lowest breaking stress and elongation at break with 9.2 MPa and 1.5%, respectively. The ABS‐permalloy composite presents the lowest Young's modulus with 781.5 MPa. Also, the magnetic fillers do not change significantly the thermal, dielectric, and the electrical properties of the composites at this concentration (10 wt%). Overall, the present work demonstrates the feasibility of the modulation of the mechanical and the tuning of the magnetic properties of ABS‐based magnetic nanocomposites by changing the magnetic material and by applying a magnetic field during the processing of the composites, allowing their application in areas including sensors, actuators, and magnetic devices.</jats:p></jats:sec><jats:sec><jats:title>Highlights</jats:title><jats:p><jats:list list-type="bullet"> <jats:list-item><jats:p>Magnetic nanoparticles can engineer the magnetic properties in a composite.</jats:p></jats:list-item> <jats:list-item><jats:p>Nanoparticles (NP) can engineer mechanical properties depending on their material.</jats:p></jats:list-item> <jats:list-item><jats:p>NP can engineer mechanical properties depending on their dimensions.</jats:p></jats:list-item> <jats:list-item><jats:p>With this process, the thermal, electric, and dielectric properties are preserved.</jats:p></jats:list-item> <jats:list-item><jats:p>Applied magnetic fields during solvent evaporations affects the Young's modulus.</jats:p></jats:list-item> </jats:list></jats:p></jats:sec>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • Carbon
  • inclusion
  • solvent casting
  • casting
  • thermoplastic
  • size-exclusion chromatography
  • magnetization
  • saturation magnetization
  • solvent evaporation