Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sahoo, Nanda Gopal

  • Google
  • 8
  • 36
  • 138

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024Influence of bio‐resource‐derived graphene oxide on the mechanical and thermal properties of poly(vinyl alcohol) nanocomposites11citations
  • 2023Binder-Free Supercapacitors Based on Thin Films of MWCNT/GO Nanohybrids: Computational and Experimental Analysis4citations
  • 2023Coconut-husk Derived Graphene for Supercapacitor Applications: Comparative Analysis of Polymer Gel and Aqueous Electrolytes16citations
  • 2023Recent advances in carbon-based materials for high-performance perovskite solar cells: gaps, challenges and fulfillment33citations
  • 2023Self-healing nanocomposites <i>via</i> N-doped GO promoted “click chemistry”4citations
  • 2021Effect of graphene oxide on the mechanical and thermal properties of graphene oxide/hytrel nanocomposites32citations
  • 2020Binder-free reduced graphene oxide as electrode material for efficient supercapacitor with aqueous and polymer electrolytes33citations
  • 2015Development and Characterization of Biocompatible Fullerene [C60]/Amphiphilic Block Copolymer Nanocomposite5citations

Places of action

Chart of shared publication
Tewari, Chetna
3 / 4 shared
Arya, Tanuja
1 / 1 shared
Bohra, Bhashkar Singh
1 / 2 shared
Jung, Yong Chae
1 / 1 shared
Dikshit, Vishwesh
1 / 1 shared
Dhali, Sunil
4 / 4 shared
Pathak, Mayank
2 / 2 shared
Shantibhusan, Boddepalli
1 / 1 shared
Karakoti, Manoj
3 / 7 shared
Dhapola, Pawan Singh
2 / 3 shared
Pandey, Sandeep
3 / 3 shared
Tatrari, Gaurav
3 / 9 shared
Solanki, Manisha
1 / 1 shared
Bhatt, Diksha
1 / 1 shared
Shah, Faiz Ullah
1 / 12 shared
Pandey, Lata
1 / 1 shared
Sharma, Richa
1 / 3 shared
Lee, Man-Jong
1 / 1 shared
Bhardwaj, Dinesh
1 / 1 shared
Park, Chanwook
1 / 1 shared
Yun, Gun Jin
1 / 2 shared
Binder, Wolfgang H.
1 / 12 shared
Singh, Poonam
1 / 5 shared
Mishra, Abhishek
1 / 2 shared
Singh, Manjeet
1 / 7 shared
Kumar, Pankaj
1 / 9 shared
Chaurasia, Alok
2 / 2 shared
Mehta, Sps
1 / 1 shared
Singhal, Shailey
1 / 1 shared
Bohra, Bhashkar S.
1 / 1 shared
Rana, Sravendra
1 / 6 shared
Pandey, Neema
1 / 1 shared
Jangra, Ritu
1 / 1 shared
Mahendia, Suman
1 / 3 shared
James T. Mcleskey, Jr.
1 / 1 shared
Hu, Xiao
1 / 7 shared
Chart of publication period
2024
2023
2021
2020
2015

Co-Authors (by relevance)

  • Tewari, Chetna
  • Arya, Tanuja
  • Bohra, Bhashkar Singh
  • Jung, Yong Chae
  • Dikshit, Vishwesh
  • Dhali, Sunil
  • Pathak, Mayank
  • Shantibhusan, Boddepalli
  • Karakoti, Manoj
  • Dhapola, Pawan Singh
  • Pandey, Sandeep
  • Tatrari, Gaurav
  • Solanki, Manisha
  • Bhatt, Diksha
  • Shah, Faiz Ullah
  • Pandey, Lata
  • Sharma, Richa
  • Lee, Man-Jong
  • Bhardwaj, Dinesh
  • Park, Chanwook
  • Yun, Gun Jin
  • Binder, Wolfgang H.
  • Singh, Poonam
  • Mishra, Abhishek
  • Singh, Manjeet
  • Kumar, Pankaj
  • Chaurasia, Alok
  • Mehta, Sps
  • Singhal, Shailey
  • Bohra, Bhashkar S.
  • Rana, Sravendra
  • Pandey, Neema
  • Jangra, Ritu
  • Mahendia, Suman
  • James T. Mcleskey, Jr.
  • Hu, Xiao
OrganizationsLocationPeople

article

Influence of bio‐resource‐derived graphene oxide on the mechanical and thermal properties of poly(vinyl alcohol) nanocomposites

  • Tewari, Chetna
  • Arya, Tanuja
  • Bohra, Bhashkar Singh
  • Sahoo, Nanda Gopal
  • Jung, Yong Chae
  • Dikshit, Vishwesh
  • Dhali, Sunil
Abstract

<jats:title>Abstract</jats:title><jats:p>The present study reports on an environment‐friendly and economically viable method of synthesizing graphene oxide (GO) using agricultural waste, specifically oak (<jats:italic>Quercus ilex</jats:italic>) fruit. The agricultural waste‐derived GO (AGO) is further used as a reinforcing filler in the fabrication of poly(vinyl alcohol) (PVA) polymer nanocomposites by employing a solution‐mixing process. A series of characterization methods have been used to assess the interactions between AGO and PVA, including, Raman spectroscopy, FT‐IR, field emission scanning electron microscopy (FESEM), and energy‐dispersive x‐ray (EDX). The thermal and structural properties have been studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA)analysis, and a universal testing machine (UTM). The strong H‐bonding interaction between the PVA interface and AGO considerably enhanced interfacial dispersion and adhesion. As a result, the addition of 5 wt% AGO to the PVA polymers significantly improved their mechanical and thermal properties, including tensile strength which rose by 117%, melting temperature (<jats:italic>T</jats:italic><jats:sub>m</jats:sub>) by 7.02°C, and crystallization temperature (<jats:italic>T</jats:italic><jats:sub>c</jats:sub>) by 9.06°C. The thermal decomposition temperatures such as <jats:italic>T</jats:italic><jats:sub>5%</jats:sub>, <jats:italic>T</jats:italic><jats:sub>10%</jats:sub> and <jats:italic>T</jats:italic><jats:sub>50%</jats:sub> were increased by 53.68°C, 68.49°C, and 57.37°C, respectively. The results show that a small loading of nanofillers causes substantial increases in the thermal and mechanical properties of PVA, thus making it a promising material for structural applications.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • dispersion
  • polymer
  • scanning electron microscopy
  • strength
  • thermogravimetry
  • differential scanning calorimetry
  • Energy-dispersive X-ray spectroscopy
  • tensile strength
  • interfacial
  • Raman spectroscopy
  • crystallization
  • thermal decomposition
  • alcohol
  • melting temperature
  • crystallization temperature
  • thermal decomposition temperature