Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lobanova, Marina

  • Google
  • 1
  • 5
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Effect of post‐curing temperature on the retention of mechanical strength of phthalonitrile thermosets and composites after a long‐term thermal oxidative aging10citations

Places of action

Chart of shared publication
Bulgakov, Boris
1 / 3 shared
Aleshkevich, Vladislav
1 / 1 shared
Morozov, Oleg
1 / 2 shared
Avdeev, Viktor
1 / 2 shared
Babkin, Alexander
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Bulgakov, Boris
  • Aleshkevich, Vladislav
  • Morozov, Oleg
  • Avdeev, Viktor
  • Babkin, Alexander
OrganizationsLocationPeople

article

Effect of post‐curing temperature on the retention of mechanical strength of phthalonitrile thermosets and composites after a long‐term thermal oxidative aging

  • Bulgakov, Boris
  • Aleshkevich, Vladislav
  • Morozov, Oleg
  • Lobanova, Marina
  • Avdeev, Viktor
  • Babkin, Alexander
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:label /><jats:p>This work concerns the thermal‐oxidative aging behavior of phthalonitrile thermosets and composites at 280–350°C. The easy‐to‐process resin containing bis(3‐[3,4‐dicyanophenoxy]phenyl)phenyl phosphate with APB as curing agent and the resin‐based composites post‐cured at 330°C, 350°C, and 375°C were studied. The phthalonitrile thermosets post‐cured at 330°C retained flexural strength of 77 MPa after 200 h of thermal aging at 280°C and 37 MPa (40%) after the same time at 300°C while the resins post‐cured at 350°C and 375°C lost over 80% of the flexural strength in these experiments. The same trend of faster oxidation of the samples post‐cured at higher temperatures was observed for the composites. For the first time, crosslinking reactions were observed during the aging, despite the aging temperatures being below the Tg of thermosets. Thus, the work shows a high long‐term thermal oxidative stability of the studied phthalonitrile resins at temperatures up to 300°C and fast destruction of the materials at 350°C despite the resin decomposition temperatures determined by dynamic TGA being over 500°C. The work has shown the negative effect of high‐temperature post‐curing on the operating properties of the phthalonitrile composites as constructive materials for long‐term application at elevated temperatures.</jats:p></jats:sec><jats:sec><jats:title>Highlights</jats:title><jats:p><jats:list list-type="bullet"> <jats:list-item><jats:p>Oxidation of phthalonitrile thermoset occurs at temperatures over 300°C in air.</jats:p></jats:list-item> <jats:list-item><jats:p>Increase in post‐curing temperature decreases thermal oxidation resistance.</jats:p></jats:list-item> <jats:list-item><jats:p>Thermosets retained up to 77% of flexural strength after 200 h aging at 300°C.</jats:p></jats:list-item> <jats:list-item><jats:p>Composites retained over 90% of ILSS after 200 h of aging at 300°C.</jats:p></jats:list-item> </jats:list></jats:p></jats:sec>

Topics
  • experiment
  • strength
  • composite
  • flexural strength
  • thermogravimetry
  • aging
  • resin
  • thermoset
  • size-exclusion chromatography
  • decomposition
  • aging
  • curing