Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Choudhury, Pannalal

  • Google
  • 1
  • 1
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Epoxy composites integrated with functionalized wet‐milled graphitic nanoparticles: Featuring enhanced mechanical performance and in‐plane fracture resistance3citations

Places of action

Chart of shared publication
Borah, Lakshi Nandan
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Borah, Lakshi Nandan
OrganizationsLocationPeople

article

Epoxy composites integrated with functionalized wet‐milled graphitic nanoparticles: Featuring enhanced mechanical performance and in‐plane fracture resistance

  • Choudhury, Pannalal
  • Borah, Lakshi Nandan
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:label /><jats:p>Composites made of epoxy‐based systems are popular in many engineering applications because of their enhanced mechanical performance, fatigue properties, and other physical and thermal properties, but their low fracture toughness can limit their usefulness in high‐performance structural applications. This study aims to enhance the fracture properties of epoxy‐based composites by adding cost‐effective ball‐milled graphitic nanoparticles. Herein, dry ball milling for 15 and 48 h is done to produce ball‐milled graphite (BMG) nanoparticles. A significant reduction in particle size is achieved after 15 h of dry milling. Interestingly, a similar reduction in particle size is achieved for BMG (~258 nm) when wet ball milling for 3 h is performed. These BMGs were silanized (SBMG@3) and incorporated into the epoxy network. We found even at a higher loading level of SBMG@3, the resulting nanocomposites exhibited a significant improvement in fracture toughness (~2.47 MPa m<jats:sup>1/2</jats:sup>) and energy (~1.55 kJ/m<jats:sup>2</jats:sup>). This improvement was attributed to the upliftment of the in‐plane crack propagation resistance of the nanocomposites primarily offered by SBMG@3 due to coagulated interfacial interaction with the epoxy network that effectively hindered the propagation of the crack by providing numerous sites for energy dissipation, leading to improved fracture toughness. Our results demonstrate that SBMG@3 has great potential for improving the fracture toughness and energy of epoxy‐based composites, making them suitable for various industrial applications.</jats:p></jats:sec><jats:sec><jats:title>Highlights</jats:title><jats:p><jats:list list-type="bullet"> <jats:list-item><jats:p>Synthesized cost‐effective 2D carbon nanofillers via high‐energy ball milling.</jats:p></jats:list-item> <jats:list-item><jats:p>To overcome the re‐agglomeration effect wet ball milling is performed.</jats:p></jats:list-item> <jats:list-item><jats:p>Transformation of natural graphite to BMG with sizes of ~258 nm.</jats:p></jats:list-item> <jats:list-item><jats:p><jats:italic>K</jats:italic><jats:sub><jats:italic>IC</jats:italic></jats:sub> and <jats:italic>G</jats:italic><jats:sub><jats:italic>IC</jats:italic></jats:sub> improve to ~2.47 MPa m<jats:sup>1/2</jats:sup> and 1.55 kJ/m<jats:sup>2</jats:sup>, respectively, for ECSB1.</jats:p></jats:list-item> <jats:list-item><jats:p><jats:italic>FS</jats:italic> and <jats:italic>FM</jats:italic> of the epoxy nanocomposites enhanced by ~43.69% and ~51.64%.</jats:p></jats:list-item> </jats:list></jats:p></jats:sec>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • Carbon
  • crack
  • milling
  • fatigue
  • ball milling
  • ball milling
  • interfacial
  • size-exclusion chromatography
  • fracture toughness
  • ion chromatography