People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Aviles, Francis
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Structural health monitoring of carbon nanotube-modified glass fiber-reinforced polymer composites by electrical resistance measurements and digital image correlationcitations
- 2022Processing‐structure‐property relationship of multilayer graphene sheet thermosetting nanocomposites manufactured by calenderingcitations
- 2022A Comparative Study of the Electrical and Electromechanical Responses of Carbon Nanotube/Polypropylene Composites in Alternating and Direct Currentcitations
- 2020Electro-mechanical properties of thermoplastic polyurethane films and tubes modified by hybrid carbon nanostructures for pressure sensingcitations
Places of action
Organizations | Location | People |
---|
article
Processing‐structure‐property relationship of multilayer graphene sheet thermosetting nanocomposites manufactured by calendering
Abstract
<jats:title>Abstract</jats:title><jats:p>The dispersion state of multilayer graphene sheets in polymers has a strong impact on the properties of the nanocomposite, and is driven by the processing parameters of the dispersion method. Herein, multilayer graphene sheet/vinyl ester nanocomposites were manufactured using a three‐roll mill. The roller gaps and number of processing cycles were varied to study their effect on the dispersion state and their relationship with the effective electromechanical properties of the nanocomposites. It was found that reducing the roller gaps and increasing the number of processing cycles yields smaller (up to 7.4 μm in diameter) and more densely packed (up to ~1500 agglomerates/mm<jats:sup>2</jats:sup>) agglomerates. Nanocomposites manufactured with the three‐roll mill contain agglomerates up to 75% smaller and more densely packed than those manufactured with an ultrasonic tip. Electrical conductivity was higher for moderately‐sized, homogeneously distributed agglomerates (23 μm in diameter) with a high areal density (~920 agglomerates/mm<jats:sup>2</jats:sup>), while smaller agglomerates reduced electrical conductivity. Smaller agglomerates increased the mechanical properties but decreased the piezoresistive sensitivity. The agglomerate density proved to be a key factor governing the piezoresistive sensitivity, with a lower number of agglomerates per unit area promoting higher gauge factors.</jats:p>