People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Senis, Evangelos
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2020The influence of graphene oxide filler on the electrical and thermal properties of unidirectional carbon fiber/epoxy laminatescitations
- 2020The influence of graphene oxide filler on the electrical and thermal properties of unidirectional carbon fiber/epoxy laminates: Effect of out-of-plane alignment of the graphene oxide nanoparticlescitations
- 2019Graphene Oxide based enhancement of electrical, thermal and mechanical properties of CFRP materials for wind turbine applications
- 2019Enhancement of the electrical and thermal properties of unidirectional carbon fibre/epoxy laminates through the addition of graphene oxidecitations
- 2019Enhancement of the electrical and thermal properties of unidirectional carbon fibre/epoxy laminates through the addition of graphene oxidecitations
- 2017The Influence of Graphene Oxide on the electrical conduction in unidirectional CFRP laminates for wind turbine blade applications
- 2017Reducing the electrical anisotropy in unidirectional CFRP materials for wind turbine blade applications
- 2017Reducing the electrical anisotropy in unidirectional CFRP materials for wind turbine blade applications
Places of action
Organizations | Location | People |
---|
article
The influence of graphene oxide filler on the electrical and thermal properties of unidirectional carbon fiber/epoxy laminates
Abstract
The influence of out‐of‐plane alignment of graphene oxide (GO) platelets used as matrix filler on the through‐thickness electrical and thermal conductivity of unidirectional carbon fiber‐reinforced polymers (CFRPs) composites has been investigated. By utilizing an external AC field, the orientation of GO flakes was altered to take advantage of the higher electrical and thermal conductivity along the graphene basal planes. Commercially available GO was dispersed in quantities up to 5 wt% into the epoxy matrix prior to vacuum infusion into dry carbon fabric to form CFRP laminates. Both GO‐modified CFRP laminates containing randomly oriented GO and aligned GO‐modified CFRP (A‐GO/CFRP) laminates were manufactured to assess the influence of the application of the electric field. Measurements of the electrical conductivity revealed markedly increased values for the A‐GO/CFRP even with low filler contents. The thermal conductivity, albeit increased in A‐GO/CFRP, only resulted in modest improvements. Mechanical tests of the interlaminar shear strength (ILSS) showed that the A‐GO/CFRP laminates exhibited significantly improved behavior and retained higher ILSS values (than the randomly aligned GO/CFRP laminates) even at high filler contents.