Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cunha, Tairan F. Da

  • Google
  • 1
  • 5
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Electromagnetic interference shielding effectiveness of composites based on polyurethane derived from castor oil and nanostructured carbon fillers18citations

Places of action

Chart of shared publication
Pegoretti, Alessandro
1 / 36 shared
Vargas, Patricia Cristine
1 / 1 shared
Ramôa, Sílvia D. A. S.
1 / 4 shared
Soares, Bluma G.
1 / 10 shared
Barra, Guilherme M. O.
1 / 9 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Pegoretti, Alessandro
  • Vargas, Patricia Cristine
  • Ramôa, Sílvia D. A. S.
  • Soares, Bluma G.
  • Barra, Guilherme M. O.
OrganizationsLocationPeople

article

Electromagnetic interference shielding effectiveness of composites based on polyurethane derived from castor oil and nanostructured carbon fillers

  • Cunha, Tairan F. Da
  • Pegoretti, Alessandro
  • Vargas, Patricia Cristine
  • Ramôa, Sílvia D. A. S.
  • Soares, Bluma G.
  • Barra, Guilherme M. O.
Abstract

<jats:p>Graphene nanoplatelets (xGnP), expanded graphite (EG), multiwall carbon nanotubes (MWCNTs), and carbon black (CB) were dispersed in various amounts in a thermosetting polyurethane (PU) matrix derived from castor oil and composite plaques were obtained by compression molding. The electrical percolation threshold was found to be 0.1 vol% for MWCNT, 0.5 vol% for xGnP, 2.8 vol% for CB, and 2.7 vol% for EG‐filled systems. The relation between electrical conductivity, morphology, and electromagnetic interference shielding effectiveness (EMI SE) of the resulting composites was studied to understand how the EMI SE is influenced by morphology and electrical conductivity of each filler. The composites display significantly distinct EMI SE values, depending on the type of carbon filler and its volume fraction. Composite based in PU/EG and PU/xGnP exhibited the highest EMI SE values (70 and 47 −dB, respectively); however, PU/MWCNT composites showed higher EMI SE (24 −dB) value at the same filler content (3 vol%) than the other composite system. POLYM. COMPOS., 40:E78–E87, 2019. © 2017 Society of Plastics Engineers</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • Carbon
  • nanotube
  • composite
  • electrical conductivity
  • compression molding