Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vilcinskas, Karolis

  • Google
  • 2
  • 5
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2016Water Sorption and Diffusion in (Reduced) Graphene Oxide-Alginate Biopolymer Nanocomposites21citations
  • 2016Composition dependent properties of graphene (oxide)-alginate biopolymer nanocomposites10citations

Places of action

Chart of shared publication
Mulder, Fokko
2 / 3 shared
Jansen, Kaspar
2 / 48 shared
Zlopasa, Jure
1 / 3 shared
Picken, S. J.
2 / 16 shared
Koper, Ger
2 / 2 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Mulder, Fokko
  • Jansen, Kaspar
  • Zlopasa, Jure
  • Picken, S. J.
  • Koper, Ger
OrganizationsLocationPeople

article

Composition dependent properties of graphene (oxide)-alginate biopolymer nanocomposites

  • Vilcinskas, Karolis
  • Mulder, Fokko
  • Jansen, Kaspar
  • Picken, S. J.
  • Koper, Ger
Abstract

<p>We report on the thermal, electrical, and mechanical properties of alginate biopolymer nanocomposites prepared by solution casting with various amounts of graphene oxide (GO) or reduced GO (rGO). Our data shows that the thermal stability of alginate nanocomposites can be improved by the introduction of cross-linking through divalent metal cations, albeit that under these conditions little influence by the amount of rGO remains. On the other hand, the electrical conductivity of divalent metal ion cross-linked-rGO improves approximately 10 orders of magnitude with increasing weight fraction of rGO, whereas it declines for sodium alginate-GO composites. In addition, storage moduli and glass to rubber transition temperatures show strong composition dependence as a consequence of complex interactions of the ions with both polymer and filler. We propose a mechanical model that allows for the accurate prediction of reinforcement by GO sheets in sodium alginate-GO composites taking into account the orientational order of the sheets. Creep tests reveal the complex nature of multiple stress relaxation mechanisms in the nanocomposites although the stretched exponential Burgers' model accurately describes short time creep compliance.</p>

Topics
  • nanocomposite
  • glass
  • glass
  • Sodium
  • casting
  • rubber
  • electrical conductivity
  • creep
  • creep test