Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kilic, Ali

  • Google
  • 1
  • 3
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Hybrid composites from coir fibers reinforced with woven glass fabrics: Physical and mechanical evaluation25citations

Places of action

Chart of shared publication
Candan, Zeki
1 / 8 shared
Bodur, Mehmet Safa
1 / 2 shared
Hassanin, Ahmed H.
1 / 8 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Candan, Zeki
  • Bodur, Mehmet Safa
  • Hassanin, Ahmed H.
OrganizationsLocationPeople

article

Hybrid composites from coir fibers reinforced with woven glass fabrics: Physical and mechanical evaluation

  • Kilic, Ali
  • Candan, Zeki
  • Bodur, Mehmet Safa
  • Hassanin, Ahmed H.
Abstract

<jats:p>Sandwich composites based on coir fiber nonwoven mats as core material were manufactured by Vacuum Assisted Resin Transfer Molding technique. Mechanical and physical properties of produced coir/polyester and coir‐glass/polyester composites were assessed. Samples were evaluated according to their reinforcement contents, resin contents, areal density, and thickness. Tests on physical properties revealed that coir‐glass/polyester sandwich structure has the lowest values of thickness swelling, water absorption and moisture contents compared with coir/polyester composite. Mechanical tests such as tensile strength, open‐hole tensile strength, and flexural strength were also performed on all samples. Coir‐glass/polyester sandwich structure showed significant increase in tensile strength of 70 MPa compared with 8 MPa of coir/polyester composite. Introducing two skins of fiber glass woven roving to coir/polyester increased its flexural strength from 31.8 to 131.8 MPa for coir‐glass/polyester. POLYM. COMPOS., 38:2212–2220, 2017. © 2015 Society of Plastics Engineers</jats:p>

Topics
  • density
  • polymer
  • glass
  • glass
  • strength
  • composite
  • flexural strength
  • tensile strength
  • resin
  • woven