People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sharif, Tahir
University of Derby
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Multiscale damage modelling of notched and un-notched 3D woven composites with randomly distributed manufacturing defectscitations
- 2023Bearing performance and damage characteristics of rein-infused thermoplastic 3D woven composites bolted jointscitations
- 2022Off-axis tensile performance of notched resin-infused thermoplastic 3D fibre-reinforced compositescitations
- 2021Cure mechanism and kinetic prediction of biobased glass/polyfurfuryl alcohol prepreg by model-free kineticscitations
- 2018Forming low-cost, high quality carbon tows for automotive application.
- 2013Cost-effective manufacturing process for the development of automotive from energy efficient composite materials and sandwich structurescitations
Places of action
Organizations | Location | People |
---|
article
Cost-effective manufacturing process for the development of automotive from energy efficient composite materials and sandwich structures
Abstract
The advanced composite materials are increasingly being used in the automotives for their ultralight physical properties and super strong mechanical properties. This research examines the cost-effective single-step liquid resin infusion manufacturing process for developing all composite car body as the generally used sheet molding compound manufacturing process is highly capital intensive. Three different scaled down models of the Eco car were developed focusing on minimal weight and air drag coupled with aesthetics. Structural design and analysis was carried out using the Pro/E and Ansys tools. The Pro-E model was scaled up to generate computer-aided drafting drawings for tool development. Different stations were marked on the model and sliced virtually for development of pattern. Moreover, the mold was manufactured from carbon and glass/polyester composites for prototype manufacturing of the car body. This involved manual placement of desired number of carbon layers as preform on female side of the mold. The vacuum sucked the resin through a number of carefully selected entry ports which ensured effective resin distribution and impregnation. Polycarbonate wind shield was thermoformed in the convection oven according to streamlined geometry of car body and hinged. The car body was integrated with the compatible floor panels and accessories. The crumble zone shock absorber in the bumper was manufactured using successive layers of nomax honeycomb and polyvinyl chloride rigid foam to dampen the accidental shock. The car performed remarkably well in the Eco marathon race held at Malaysia, 35:97–104, 2014. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers