People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Amico, Sandro Campos
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024On the experimental determination and prediction of damage evolution in composites via cyclic testingcitations
- 2024Experimental investigation on low-velocity impact behavior of glass, Kevlar, and hybrid composites with an elastomeric polyurethane matrix
- 2023Wood-Poly(furfuryl Alcohol) Prepreg: A Novel, Ecofriendly Laminate Composite
- 2023Thermomechanical properties of imidazolium ionic liquid-modified mwcnt/carbon fiber/epoxy hybrid composite laminatescitations
- 2021Manufacturing of filament wound cylinders locally reinforced by tailored patches
- 2014Mechanical behavior and correlation between dynamic fragility and dynamic mechanical properties of curaua fiber compositescitations
- 2013Hybridization effect on the mechanical properties of curaua/glass fiber compositescitations
- 2013Short beam strength of curaua, sisal, glass and hybrid compositescitations
- 2012Study of hybrid intralaminate curaua/glass compositescitations
- 2012Study of polypropylene/ethylene-propylene-diene monomer blends reinforced with sisal fiberscitations
Places of action
Organizations | Location | People |
---|
article
Study of polypropylene/ethylene-propylene-diene monomer blends reinforced with sisal fibers
Abstract
<p>Thermoplastics reinforced with natural fibers have attracted much attention from researchers because of their advantages, especially regarding environmental aspects. However, poor impact strength, particularly at low temperatures, limits the application of some thermoplastics, such as polypropylene (PP). To minimize this drawback, impact modifiers have been used, including the terpolymer of ethylene-propylene-diene (EPDM). In this work, PP/EPDM/sisal composites of distinct compositions were investigated focusing on the effect of the alkali (NaOH) treatment of the vegetable fiber on the composites properties regarding physical, mechanical, thermal, and morphological behavior. The results indicated that flow rate decreases at higher fiber content due to flow hindering by the presence of the fibers. The addition of the fiber, in general, increased Young's modulus and strength (tensile and flexural), whereas impact strength increased for higher EPDM content. The alkali treatment was considered generally efficient in terms of mechanical properties, even though this was not found in the dynamic mechanical analysis.</p>