Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Awad, Somia

  • Google
  • 2
  • 5
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024<scp>Ni</scp><scp>Co</scp><scp>Mo</scp> nanoparticles as an efficient electrocatalyst for methanol electro‐oxidation in alkaline media3citations
  • 2023Valuation of bimetallic <scp>Pd/Ni</scp> nanoparticles catalyst for the applications in direct methanol fuel cells4citations

Places of action

Chart of shared publication
Abdelhady, Esam E.
2 / 2 shared
Aldies, Alanood M.
1 / 1 shared
Alsheqefi, F. U. Y.
2 / 2 shared
Almahdawi, Rihab
1 / 1 shared
Ibrahim, Mohamed
1 / 16 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Abdelhady, Esam E.
  • Aldies, Alanood M.
  • Alsheqefi, F. U. Y.
  • Almahdawi, Rihab
  • Ibrahim, Mohamed
OrganizationsLocationPeople

article

<scp>Ni</scp><scp>Co</scp><scp>Mo</scp> nanoparticles as an efficient electrocatalyst for methanol electro‐oxidation in alkaline media

  • Abdelhady, Esam E.
  • Aldies, Alanood M.
  • Alsheqefi, F. U. Y.
  • Awad, Somia
  • Almahdawi, Rihab
Abstract

<jats:title>Abstract</jats:title><jats:p>Using the electrospinning approach, various percentages of less expensive metal alloy‐decorated nanofiber catalysts have been successfully made as a substitute for platinum in direct methanol fuel cells (DMFC). This work focuses on the synthesis and characterization of catalysts with metal fixed ratio of 20% wt for DMFC applications, specifically Ni/CNFs, Co/CNFs, and NiCoMo/CNFs. The catalysts are characterized using various techniques, including x‐ray diffraction, scanning electron microscope, transmission electron microscopy, energy dispersive x‐ray, and electrochemical measurements. All the prepared samples, regardless of the metal concentration, had good nanofiber form and a distinct nanoparticle appearance, according to the scanning electron microscope (SEM). Chromatography, scan rate, response time, and cyclic voltammetry all were used to examine the samples' ability to perform methanol electrocatalysis. When Mo is added to Ni with Co, the electrooxidation reaction's activation energy and electrode stability both increase. With a starting potential of 0.22 V, the maximum current density in the NiCoMo/CNF sample was 99.8 mA/cm<jats:sup>2</jats:sup> at 0.6 V. To electrooxidize methanol, our electrocatalysts combine diffusion control with kinetic‐limiting processes. This work has shown how to create an effective NiCoMo based methanol electrooxidation catalyst using a special technique.</jats:p>

Topics
  • nanoparticle
  • density
  • impedance spectroscopy
  • scanning electron microscopy
  • Platinum
  • laser emission spectroscopy
  • transmission electron microscopy
  • activation
  • current density
  • cyclic voltammetry
  • electrospinning
  • chromatography