People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Galiotis, Costas
University of Patras
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2024Operando characterization and molecular simulations reveal the growth kinetics of graphene on liquid copper during chemical vapor depositioncitations
- 2024Operando Characterization and Molecular Simulations Reveal the Growth Kinetics of Graphene on Liquid Copper During Chemical Vapor Depositioncitations
- 2023Understanding cure and interphase effects in functionalized graphene-epoxy nanocompositescitations
- 2023Understanding cure and interphase effects in functionalized graphene-epoxy nanocompositescitations
- 2023Tribology of Copper Metal Matrix Composites Reinforced with Fluorinated Graphene Oxide Nanosheets: Implications for Solid Lubricants in Mechanical Switchescitations
- 2023Mesoscopic Modeling and Experimental Validation of Thermal and Mechanical Properties of Polypropylene Nanocomposites Reinforced By Graphene-Based Fillerscitations
- 2023Nanomechanics of Ultrathin Carbon Nanomembranescitations
- 2023Novel Graphene-Based Materials as a Tool for Improving Long-Term Storage of Cultural Heritagecitations
- 2023Highly stretchable strain sensors based on Marangoni self-assemblies of graphene and its hybrids with other 2D materialscitations
- 2022Hazard Assessment of Abraded Thermoplastic Composites Reinforced with Reduced Graphene Oxidecitations
- 2021Highly Deformable, Ultrathin Large-Area Poly(methyl methacrylate) Filmscitations
- 2021Highly Deformable, Ultrathin Large-Area Poly(methyl methacrylate) Filmscitations
- 2021Efficient Mechanical Stress Transfer in Multilayer Graphene with a Ladder-like Architecturecitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materials
- 2020Graphene and related materials in hierarchical fiber composites: Production techniques and key industrial benefitscitations
- 2020Mechanical, Electrical, and Thermal Properties of Carbon Nanotube Buckypapers/Epoxy Nanocomposites Produced by Oxidized and Epoxidized Nanotubes
- 2019Graphene and related materials in hierarchical fiber composites: production techniques and key industrial benefitscitations
- 2019Graphene and related materials in hierarchical fiber composites: production techniques and key industrial benefitscitations
- 2016Mechanical Stability of Flexible Graphene-Based Displayscitations
- 2015Deformation of Wrinkled Graphenecitations
- 2011Development of a universal stress sensor for graphene and carbon fibrescitations
- 2002Progress on composites with embedded shape memory alloy wirescitations
Places of action
Organizations | Location | People |
---|
article
Understanding cure and interphase effects in functionalized graphene-epoxy nanocomposites
Abstract
Agglomerations effects of graphene-based nanofillers are often reported in the literature to be the main reason on the deterioration of the mechanical properties, especially at high filler loadings. In our study, we focused on the correlated effects of plasma-treated graphene nanofillers on the curing reaction and mechanical properties of an epoxy matrix. Specifically, we explored the effect of dispersion state, planar size, filler content, surface functionalization and stoichiometric ratio on the epoxy curing process. The surface of the treated graphene nanofillers were studied in detail by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and X-ray diffraction (XRD). The results indicated greater presence of oxygen containing groups with the crystallinity to be unaffected after the plasma process. Dynamic Mechanical Analysis (DMA) was used to assess the changes in both the Tg and the mechanical properties of graphene-epoxy nanocomposites. Rheological and microscopic data showed that a well-dispersed material was achieved at high filler loadings with the use of calendaring and plasma functionalization. Although, a well-dispersed material was achieved on the bulk composite, no further mechanical reinforcement was observed at high filler loadings. The adsorption of epoxy groups onto the graphene nanofillers' surface, leading to a stoichiometric imbalance between the epoxy chains and hardener molecules, was proposed to explain the results.