Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cerovic, Dragana D.

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Dielectric properties of <scp>iPP</scp> and <scp>aPS</scp> nanocomposites with core‐shell particles obtained by treatment in transition metal salt solutionscitations

Places of action

Chart of shared publication
Andjelković, Ljubica
1 / 4 shared
Petronijević, Ivan
1 / 6 shared
Maletić, Slavica B.
1 / 2 shared
Marinković, Filip
1 / 3 shared
Dudić, Duško
1 / 8 shared
Pergal, Marija V.
1 / 7 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Andjelković, Ljubica
  • Petronijević, Ivan
  • Maletić, Slavica B.
  • Marinković, Filip
  • Dudić, Duško
  • Pergal, Marija V.
OrganizationsLocationPeople

article

Dielectric properties of <scp>iPP</scp> and <scp>aPS</scp> nanocomposites with core‐shell particles obtained by treatment in transition metal salt solutions

  • Andjelković, Ljubica
  • Petronijević, Ivan
  • Cerovic, Dragana D.
  • Maletić, Slavica B.
  • Marinković, Filip
  • Dudić, Duško
  • Pergal, Marija V.
Abstract

<jats:title>Abstract</jats:title><jats:p>The dielectric properties of nanocomposites based on isotactic polypropylene (iPP) and atactic polystyrene (aPS) obtained by novel, simple, and environmentally friendly treatment technique have been analyzed in this study. The best treatment conditions to obtain nanocomposites with embedded core‐shell particles with enhanced dielectric properties were considered. Treatment of polymer matrices in water solution iron(II)‐chloride had the most pronounced precipitation effect, that was directly related to the appearance of higher transition metal concentrations in the iPP and aPS matrices, in comparison to treatments in the other two transition metal salts, MnCl<jats:sub>2</jats:sub> and NiCl<jats:sub>2</jats:sub>. Relative dielectric constant and loss tangent have been studied in the frequency range from 20 Hz to 9 MHz. Embedded core‐shell nanoparticles (from 15 to 150 nm in diameter) in a very small amount (1.72E‐8 mol/cm<jats:sup>3</jats:sup> to 1.17E‐5 mol/cm<jats:sup>3</jats:sup>) resulted in significant improvement (2.5% up to 9.1%) and stabilization of relative dielectric constant value toward higher frequencies and also lowering loss tangent in compare to starting polymer matrices. These properties indicate that materials obtained with the presented treatment technique can be applied as microelectronic packing and with further development of the method in order to obtain a higher concentration of metal ions as energy storage devices.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • polymer
  • dielectric constant
  • precipitation
  • iron
  • appearance potential spectroscopy