Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ramesh, S.

  • Google
  • 12
  • 61
  • 275

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2024Enhancing wear resistance of AZ61 alloy through friction stir processing: experimental study and prediction model2citations
  • 2024Impact of ply stacking sequence on the mechanical response of hybrid Jute-Banana fiber phenoplast composites10citations
  • 2023Magnetic and Magnetostrictive Properties of Sol–Gel-Synthesized Chromium-Substituted Cobalt Ferrite3citations
  • 2023Effect of sintering additives on the properties of alumina toughened zirconia (ATZ)7citations
  • 2022Surface thermodynamic properties by reverse phase chromatography and visual traits using computer vision techniques on Amberlite XAD-7 acrylic-ester-resin7citations
  • 2021An Unconventional Approach for Analyzing the Mechanical Properties of Natural Fiber Composite Using Convolutional Neural Network71citations
  • 2021Design and formulation of microbially induced self-healing concrete for building structure strength enhancement4citations
  • 2021Simulation Process of Injection Molding and Optimization for Automobile Instrument Parameter in Embedded System58citations
  • 2018Is Graphitic Silicon Carbide (Silagraphene) Stable?25citations
  • 2016Poly(methyl methacrylate-co-butyl acrylate-co-acrylic acid): Physico-chemical characterization and targeted dye sensitized solar cell application82citations
  • 2014Effect of Silver Nanoparticles on the Mechanical and Physical Properties of Epoxy Based Silane Coupling Agent1citations
  • 2014Scratch resistance enhancement of 3-glycidyloxypropyltrimethoxysilane coating incorporated with silver nanoparticles5citations

Places of action

Chart of shared publication
Sharma, Priyaranjan
2 / 6 shared
Kumar, Prakash
1 / 3 shared
Bhat, Nagaraj
1 / 1 shared
Maruthi, Prashanth B. H.
2 / 3 shared
Sahu, Sandeep
1 / 5 shared
Aditya Kudva, S.
1 / 1 shared
Math, Mahantesh
1 / 1 shared
Jagadeesh, C.
1 / 1 shared
Gouda, Shivakumar
1 / 2 shared
Naik, Gajanan
1 / 1 shared
Dhanalakshmi, B.
1 / 1 shared
Beera, Chandra Sekhar
1 / 1 shared
Danabala, Dr. Nirmala Devi
1 / 1 shared
Menelaou, Melita
1 / 3 shared
Alanazi, Nadyah
1 / 1 shared
Alodhayb, Abdullah
1 / 4 shared
Shyamala, P.
1 / 1 shared
Rao, B. Parvatheeswara
1 / 1 shared
Mishra, Akanksha
1 / 1 shared
Vijayalakshmi, D.
1 / 1 shared
Aljaoni, Besan
1 / 1 shared
Gul, M.
1 / 2 shared
Lee, K. Y. Sara
1 / 1 shared
Abbas, Mohamed
1 / 2 shared
Tasfy, S. F. H.
1 / 1 shared
Kakani, V.
1 / 1 shared
Hamieh, Tayssir
1 / 35 shared
Kumar, B. P.
1 / 1 shared
Kim, C. W.
1 / 2 shared
Kim, M. D.
1 / 1 shared
Rao, P. V.
1 / 3 shared
Pasupuleti, K. S.
1 / 1 shared
Rajkumar, S.
1 / 17 shared
Ramkumar, Govindaraj
1 / 1 shared
Nirmala, P.
2 / 2 shared
Anitha, G.
2 / 3 shared
Sahoo, Satyajeet
2 / 2 shared
Tamilselvi, M.
1 / 1 shared
Subbiah, Ram
1 / 19 shared
Jegatheeswaran, D.
1 / 1 shared
Sundravel, K. Vijaya
1 / 1 shared
Ramkumar, G.
1 / 2 shared
Lalvani, J. Isaac Joshuaramesh
1 / 4 shared
Gnanasekar, A. K.
1 / 1 shared
Boisron, O.
1 / 2 shared
Masenelli-Varlot, K.
1 / 3 shared
Melinon, P.
1 / 2 shared
Yaghoubi, A.
1 / 2 shared
Chee, S. Y.
1 / 2 shared
Salim, Y. S.
1 / 1 shared
Shanti, R.
1 / 1 shared
Bella, Federico
1 / 45 shared
Ramesh, K.
3 / 5 shared
Arun, N.
2 / 3 shared
Vengadaesvaran, B.
2 / 3 shared
Bushroa, A. R.
2 / 2 shared
Chanthiriga, R.
2 / 2 shared
Rau, S. R.
2 / 2 shared
Al-Shabeeb, G. H. E.
2 / 2 shared
Arof, Abdul Kariem
2 / 2 shared
Vikneswaran, R.
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2018
2016
2014

Co-Authors (by relevance)

  • Sharma, Priyaranjan
  • Kumar, Prakash
  • Bhat, Nagaraj
  • Maruthi, Prashanth B. H.
  • Sahu, Sandeep
  • Aditya Kudva, S.
  • Math, Mahantesh
  • Jagadeesh, C.
  • Gouda, Shivakumar
  • Naik, Gajanan
  • Dhanalakshmi, B.
  • Beera, Chandra Sekhar
  • Danabala, Dr. Nirmala Devi
  • Menelaou, Melita
  • Alanazi, Nadyah
  • Alodhayb, Abdullah
  • Shyamala, P.
  • Rao, B. Parvatheeswara
  • Mishra, Akanksha
  • Vijayalakshmi, D.
  • Aljaoni, Besan
  • Gul, M.
  • Lee, K. Y. Sara
  • Abbas, Mohamed
  • Tasfy, S. F. H.
  • Kakani, V.
  • Hamieh, Tayssir
  • Kumar, B. P.
  • Kim, C. W.
  • Kim, M. D.
  • Rao, P. V.
  • Pasupuleti, K. S.
  • Rajkumar, S.
  • Ramkumar, Govindaraj
  • Nirmala, P.
  • Anitha, G.
  • Sahoo, Satyajeet
  • Tamilselvi, M.
  • Subbiah, Ram
  • Jegatheeswaran, D.
  • Sundravel, K. Vijaya
  • Ramkumar, G.
  • Lalvani, J. Isaac Joshuaramesh
  • Gnanasekar, A. K.
  • Boisron, O.
  • Masenelli-Varlot, K.
  • Melinon, P.
  • Yaghoubi, A.
  • Chee, S. Y.
  • Salim, Y. S.
  • Shanti, R.
  • Bella, Federico
  • Ramesh, K.
  • Arun, N.
  • Vengadaesvaran, B.
  • Bushroa, A. R.
  • Chanthiriga, R.
  • Rau, S. R.
  • Al-Shabeeb, G. H. E.
  • Arof, Abdul Kariem
  • Vikneswaran, R.
OrganizationsLocationPeople

article

Surface thermodynamic properties by reverse phase chromatography and visual traits using computer vision techniques on Amberlite XAD-7 acrylic-ester-resin

  • Kakani, V.
  • Hamieh, Tayssir
  • Kumar, B. P.
  • Kim, C. W.
  • Ramesh, S.
  • Kim, M. D.
  • Rao, P. V.
  • Pasupuleti, K. S.
Abstract

In the current work, the surface thermodynamic properties of Amberlite XAD-7 acrylic-ester-resin have been determined. The inverse gas chromatography (IGC) technique at infinite dilution was applied to estimate the London dispersive surface free energy.ds was estimated by using the well-known Fowkes equation, Dorris-Gray relation, Hamieh-Dorris-Gray model and six other molecular models based on the values of the surface areas of organic molecules and Hamieh model considering the thermal effect. The London dispersive surface free energy values are reduced by increasing temperature in all used methods and models. The Gibbs surface free energy of the adsorption values also decreased by increasing temperature in all 14 methods such as that of Swayer-Brookman, Saint-Flour Papirer, Donnet, Brendle and Papirer, Chehimi et al, Hamieh methods (thermal method) and the methods of the enthalpy of vaporization as a function of the temperature.H0 vapoTTHORN and the standard enthalpy of formation. Delta H-f(0) and the six molecular models. The Lewis acidity parameter K-A and Lewis basicity parameter, K-D was calculated by the above stated 14 methods. The surface character "S" value was estimated to be greater than one in all the 14 methods. This indicate that the Amberlite XAD-7 polymer material contains mostly basic sites than the acidic sites, and it can be strongly interactive with an acidic media. In addition, the visual traits such as pore size distribution, surface roughness and intricate surface morphology of the polymer resin in its original form have been explored using computer vision techniques.

Topics
  • pore
  • morphology
  • surface
  • polymer
  • phase
  • resin
  • ester
  • inverse gas chromatography