Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

David, Yaniv

  • Google
  • 1
  • 6
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Electro‐conductive fabrics based on dip coating of cotton in poly(3‐hexylthiophene)16citations

Places of action

Chart of shared publication
Buzhor, Marina
1 / 3 shared
David, Nofar Cohen
1 / 1 shared
Katz, Nathaniel
1 / 1 shared
Anavi, Daniel
1 / 1 shared
Milanovich, Michael
1 / 1 shared
Amir, Elizabeth
1 / 1 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Buzhor, Marina
  • David, Nofar Cohen
  • Katz, Nathaniel
  • Anavi, Daniel
  • Milanovich, Michael
  • Amir, Elizabeth
OrganizationsLocationPeople

article

Electro‐conductive fabrics based on dip coating of cotton in poly(3‐hexylthiophene)

  • Buzhor, Marina
  • David, Nofar Cohen
  • Katz, Nathaniel
  • David, Yaniv
  • Anavi, Daniel
  • Milanovich, Michael
  • Amir, Elizabeth
Abstract

<jats:p>Electro‐conductive cotton fabrics based on poly(3‐hexylthiophene) (P3HT) were prepared using dip coating processing technique. The effect of solvent type used for the preparation of P3HT solutions on the amount of polymer incorporated into the fabric and the morphology of P3HT coated cotton fabrics were studied using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Thermal and mechanical studies revealed that after incorporation of P3HT, the fabrics preserved their original thermal stability and mechanical properties. Electrical resistivity measurements showed a decrease by several orders of magnitude in both surface and volume resistivities for cotton‐P3HT system relative to the untreated cotton. We also demonstrate that further significant improvement in electrical resistivity can be achieved by doping P3HT coated cotton with iodine. Copyright © 2016 John Wiley &amp; Sons, Ltd.</jats:p>

Topics
  • morphology
  • surface
  • polymer
  • resistivity
  • scanning electron microscopy
  • Fourier transform infrared spectroscopy
  • dip coating