Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nyul, Katalin

  • Google
  • 1
  • 6
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Use of supercritical CO2-aided and conventional melt extrusion for enhancing the dissolution rate of an active pharmaceutical ingredient26citations

Places of action

Chart of shared publication
Vajna, Balzs
1 / 1 shared
Rodier, Élisabeth
1 / 10 shared
Marosi, Gyoergy
1 / 1 shared
Fages, Jacques
1 / 19 shared
Sauceau, Martial
1 / 21 shared
Nagy, Zsombor Kristof
1 / 1 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Vajna, Balzs
  • Rodier, Élisabeth
  • Marosi, Gyoergy
  • Fages, Jacques
  • Sauceau, Martial
  • Nagy, Zsombor Kristof
OrganizationsLocationPeople

article

Use of supercritical CO2-aided and conventional melt extrusion for enhancing the dissolution rate of an active pharmaceutical ingredient

  • Vajna, Balzs
  • Rodier, Élisabeth
  • Marosi, Gyoergy
  • Fages, Jacques
  • Sauceau, Martial
  • Nyul, Katalin
  • Nagy, Zsombor Kristof
Abstract

Dispersing at the molecular level a drug in a polymer matrix is a major challenge to be addressed by the pharmaceutical industry to enhance its bioavailability or to control its release. Melt extrusion and supercritical CO2-aided melt extrusion of solid pharmaceutical formulations were performed to enhance the dissolution rate of carvedilol, taken as a model of poorly soluble drug. The presence of the drug improved the processability of the polyacrylate matrix (Eudragit E) through its plasticizing effect. The supercritical method was found gentle compared with melt extrusion owing to the shorter residence time and lower processing temperature and melt viscosity. No traces of decomposition of the drug could be detected after the supercritical extrusion process based on capillary electrophoresis results. This extrusion process resulted in effective homogenization of the components and amorphization of the drug according to Raman mapping, Fourier transform infrared spectrometry, X-ray diffraction, and polarized light microscopy. The kinetics of dissolution can be dramatically improved. Copyright (c) 2011 John Wiley & Sons, Ltd.

Topics
  • impedance spectroscopy
  • polymer
  • x-ray diffraction
  • melt
  • homogenization
  • spectrometry
  • decomposition
  • Polarized light microscopy
  • melt extrusion
  • melt viscosity