Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gorkier, M.

  • Google
  • 1
  • 2
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012ER suspensions of composite core-shell microspheres with improved sedimentation stability11citations

Places of action

Chart of shared publication
Krztoń-Maziopa, Anna
1 / 21 shared
Płocharski, Janusz
1 / 8 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Krztoń-Maziopa, Anna
  • Płocharski, Janusz
OrganizationsLocationPeople

article

ER suspensions of composite core-shell microspheres with improved sedimentation stability

  • Krztoń-Maziopa, Anna
  • Gorkier, M.
  • Płocharski, Janusz
Abstract

Electrorheological (ER) fluids are usually suspensions of solid polarizable particles in nonpolar carrier liquids. Such systems are particularly sensitive to the presence of electric fields, which transform them reversibly into solid-like bodies. Fast (within milliseconds) and fully reversible reaction of ER fluids to electric field is a subject of great interest because of many possible applications in tunable vibration dampers, clutches, valves, or brakes. A novel type of ER fluids with composite microspheres composed of polymer electrolyte shell with defined shell thickness and inorganic hollow cores has been synthesized and tested in the presence of an electric field. It has been found that suspensions with composite grains possessed more stable ER response with temperature and lower power consumption in comparison to their polymer-based counterparts. ER effect of the prepared fluids was measured and related to the applied electric field and solid phase properties. It has been also shown that suspensions of composite materials exhibited improved long-term sedimentation stability in comparison to polymer-based suspensions due to the formation of weak microstructure which suppressed the sedimentation of solid phase in off-field state. Copyright © 2011 John Wiley \& Sons, Ltd.

Topics
  • impedance spectroscopy
  • polymer
  • grain
  • phase
  • composite