Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Srinivasan, Sivakumar M.

  • Google
  • 1
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010A micromechanically motivated model for ferroelectrics combined with polygonal finite elementscitations

Places of action

Chart of shared publication
Menzel, Andreas
1 / 52 shared
Arunachalakasi, Arockiarajan
1 / 2 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Menzel, Andreas
  • Arunachalakasi, Arockiarajan
OrganizationsLocationPeople

article

A micromechanically motivated model for ferroelectrics combined with polygonal finite elements

  • Menzel, Andreas
  • Arunachalakasi, Arockiarajan
  • Srinivasan, Sivakumar M.
Abstract

<jats:title>Abstract</jats:title><jats:p>Piezoelectric materials are one of the most prominent smart materials due to their strong electromechanical coupling behaviour. Ferroelectric ceramics behave like piezoelectric materials under low electrical and mechanical loads, but exhibit pronounced nonlinear response at higher loads due to microscopic domain switching. Modern smart devices consist of complex geometries that may force the ferroelectrics employed within them to experience higher fields than they were originally designed for, so that the material responds within its nonlinear region. Hence, models predicting the nonlinear effects of ferroelectrics under complex loading cases are important from the design point of view. Within standard finite element models dealing with electromechanical problems, each grain may be subdiscretized by several finite elements. This problem can be approximated or rather overcome by a polygonal finite element method, where each grain is modelled by solely one single finite element. In this contribution, a micromechanically motivated switching model for ferroelectric ceramics, as based on volume fraction concepts, is combined with polygonal finite element approach. Related representative numerical examples allow to further study and understand the nonlinear response of this material under complex loading cases. (© 2010 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</jats:p>

Topics
  • impedance spectroscopy
  • grain
  • ceramic
  • piezoelectric material