Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Grasser, M. A.

  • Google
  • 1
  • 4
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Low Temperature Activation of Tellurium and Resource-Efficient Synthesis of AuTe2 and Ag2Te in Ionic Liquids9citations

Places of action

Chart of shared publication
Pietsch, T.
1 / 2 shared
Doert, Thomas
1 / 41 shared
Ruck, Michael
1 / 74 shared
Brunner, E.
1 / 3 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Pietsch, T.
  • Doert, Thomas
  • Ruck, Michael
  • Brunner, E.
OrganizationsLocationPeople

article

Low Temperature Activation of Tellurium and Resource-Efficient Synthesis of AuTe2 and Ag2Te in Ionic Liquids

  • Pietsch, T.
  • Doert, Thomas
  • Grasser, M. A.
  • Ruck, Michael
  • Brunner, E.
Abstract

<p>The low temperature syntheses of AuTe<sub>2</sub> and Ag<sub>2</sub>Te starting from the elements were investigated in the ionic liquids (ILs) [BMIm]X and [P<sub>66614</sub>]Z ([BMIm]<sup>+</sup>=1-butyl-3-methylimidazolium; X = Cl, [HSO<sub>4</sub>]<sup>−</sup>, [P<sub>66614</sub>]<sup>+</sup> = trihexyltetradecylphosphonium; Z = Cl<sup>−</sup>, Br<sup>−</sup>, dicyanamide [DCA]<sup>−</sup>, bis(trifluoromethylsulfonyl)imide [NTf<sub>2</sub>]<sup>−</sup>, decanoate [dec]<sup>−</sup>, acetate [OAc]<sup>−</sup>, bis(2,4,4-trimethylpentyl)phosphinate [BTMP]<sup>−</sup>). Powder X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy revealed that [P<sub>66614</sub>]Cl is the most promising candidate for the single phase synthesis of AuTe<sub>2</sub> at 200 °C. Ag<sub>2</sub>Te was obtained using the same ILs by reducing the temperature in the flask to 60 °C. Even at room temperature, quantitative yield was achieved by using either 2 mol % of [P<sub>66614</sub>]Cl in dichloromethane or a planetary ball mill. Diffusion experiments, <sup>31</sup>P and <sup>125</sup>Te-NMR, and mass spectroscopy revealed one of the reaction mechanisms at 60 °C. Catalytic amounts of alkylphosphanes in commercial [P<sub>66614</sub>]Cl activate tellurium and form soluble phosphane tellurides, which react on the metal surface to solid telluride and the initial phosphane. In addition, a convenient method for the purification of [P<sub>66614</sub>]Cl was developed.</p>

Topics
  • impedance spectroscopy
  • surface
  • phase
  • scanning electron microscopy
  • experiment
  • powder X-ray diffraction
  • activation
  • Energy-dispersive X-ray spectroscopy
  • Nuclear Magnetic Resonance spectroscopy
  • Tellurium