People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gollas, Bernhard
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Unveiling the plating-stripping mechanism in aluminum batteries with imidazolium-based electrolytes:A hierarchical model based on experiments and ab initio simulationscitations
- 2023Unveiling the plating-stripping mechanism in aluminum batteries with imidazolium-based electrolytescitations
- 2022Dissolution and electrolysis of lunar regolith in ionic liquidscitations
- 2018The impact of operating conditions on component and electrode development for zinc-air flow batteriescitations
- 2018Mesostructure and physical properties of aqueous mixtures of the ionic liquid 1-ethyl-3-methyl imidazolium octyl sulfate doped with divalent sulfate salts in the liquid and the mesomorphic statescitations
- 2017Tin, bismuth, and tin–bismuth alloy electrodeposition from chlorometalate salts in deep eutectic solventscitations
- 2014Separation of 1,3-substituted imidazoles for quality control of a Lewis acidic ionic liquid for aluminum electroplatingcitations
- 2013Mechanistic Studies of Zinc Electrodeposition from Deep Eutectic Electrolytescitations
- 2011Preparation of CoNi high surface area porous foams by substrate controlled electrodepositioncitations
- 2010Zinc electrodeposition from a deep eutectic system containing choline chloride and ethylene glycolcitations
Places of action
Organizations | Location | People |
---|
article
Tin, bismuth, and tin–bismuth alloy electrodeposition from chlorometalate salts in deep eutectic solvents
Abstract
The electrodeposition of tin, bismuth, and tin–bismuth alloys from SnII and BiIII chlorometalate salts in the choline chloride/ethylene glycol (1:2 molar ratio) deep eutectic solvent was studied on glassy carbon and gold by cyclic voltammetry, rotating disc voltammetry, and chronoamperometry. The SnII-containing electrolyte showed one voltammetric redox process corresponding to SnII/Sn0. The diffusion coefficient of [SnCl3]−, detected as the dominating species by Raman spectroscopy, was determined from Levich and Cottrell analyses. The BiIII-containing electrolyte showed two voltammetric reduction processes, both attributed to BiIII/Bi0. Dimensionless current/time transients revealed that the electrodeposition of both Sn and Bi on glassy carbon proceeded by 3D-progressive nucleation at a low overpotential and changed to instantaneous at higher overpotentials. The nucleation rate of Bi on glassy carbon was considerably smaller than that of Sn. Elemental Sn and Bi were electrodeposited on Au-coated glass slides from their respective salt solutions, as were Sn–Bi alloys from a 2:1 SnII/BiIII solution. The biphasic Sn–Bi alloys changed from a Bi-rich composition to a Sn-rich composition by making the deposition potential more negative.