Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lackner, R.

  • Google
  • 4
  • 9
  • 74

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2016Effect of Different Bearing Ratios on the Friction between Ultrahigh Molecular Weight Polyethylene Ski Bases and Snow17citations
  • 2004Comparative studies of 3D-constitutive models for concrete: Application to mixed-mode fracture41citations
  • 2003Shapes of loading surfaces of concrete models and their influence on the peak load and failure mode in structural analyses16citations
  • 2001Numerical investigations of headed studs with inclined shoulderscitations

Places of action

Chart of shared publication
Nachbauer, W.
1 / 3 shared
Unterberger, S. H.
1 / 1 shared
Hasler, M.
1 / 2 shared
Van Putten, J.
1 / 2 shared
Kaserer, Lukas
1 / 28 shared
Rohm, S.
1 / 2 shared
Knoflach, C.
1 / 1 shared
Obolt, J.
1 / 1 shared
Mang, H. A.
3 / 3 shared
Chart of publication period
2016
2004
2003
2001

Co-Authors (by relevance)

  • Nachbauer, W.
  • Unterberger, S. H.
  • Hasler, M.
  • Van Putten, J.
  • Kaserer, Lukas
  • Rohm, S.
  • Knoflach, C.
  • Obolt, J.
  • Mang, H. A.
OrganizationsLocationPeople

article

Comparative studies of 3D-constitutive models for concrete: Application to mixed-mode fracture

  • Obolt, J.
  • Mang, H. A.
  • Lackner, R.
Abstract

This paper focuses on the predictive capabilities of 3D-constitutive models for concrete when used for the simulation of mixed-mode fracture in consequence of shear-tensile loading. For this purpose, two types of constitutive models are chosen. Models belonging to the first type such as the extended Leon model (ELM) and two multi-surface models are formulated within the framework of plasticity theory. The ELM (J. Eng. Mech. (ASCE) 1994; 120: 1983–2011), a single-surface model, accounts for the dependence of the concrete strength on the Lode angle. The first multi-surface model consists of a tension-cut-off for the description of tensile cracking of concrete and a Drucker–Prager surface for the description of compressive failure. To improve the description of concrete cracking, in the second multi-surface model the tension-cut-off function is replaced by three Rankine surfaces.The second type of material models considered in the presented investigation is formulated on the basis of the microplane concept.The performance of the material models is investigated on both the constitutive and the structural level. On the constitutive level, re-analyses of Willam's test are performed. For the assessment of the model performance on the structural level, a double-edge-notched concrete specimen is investigated.

Topics
  • impedance spectroscopy
  • surface
  • theory
  • simulation
  • strength
  • plasticity