Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chiappetta, Mihaela

  • Google
  • 1
  • 5
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Data‐informed uncertainty quantification for laser‐based powder bed fusion additive manufacturing1citations

Places of action

Chart of shared publication
Carraturo, Massimo
1 / 4 shared
Reali, Alessandro
1 / 18 shared
Piazzola, Chiara
1 / 1 shared
Tamellini, Lorenzo
1 / 1 shared
Auricchio, Ferdinando
1 / 58 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Carraturo, Massimo
  • Reali, Alessandro
  • Piazzola, Chiara
  • Tamellini, Lorenzo
  • Auricchio, Ferdinando
OrganizationsLocationPeople

article

Data‐informed uncertainty quantification for laser‐based powder bed fusion additive manufacturing

  • Carraturo, Massimo
  • Chiappetta, Mihaela
  • Reali, Alessandro
  • Piazzola, Chiara
  • Tamellini, Lorenzo
  • Auricchio, Ferdinando
Abstract

<jats:title>Abstract</jats:title><jats:p>We present an efficient approach to quantify the uncertainties associated with the numerical simulations of the laser‐based powder bed fusion of metals processes. Our study focuses on a thermomechanical model of an Inconel 625 cantilever beam, based on the AMBench2018‐01 benchmark proposed by the National Institute of Standards and Technology (NIST). The proposed approach consists of a forward uncertainty quantification analysis of the residual strains of the cantilever beam given the uncertainty in some of the parameters of the numerical simulation, namely the powder convection coefficient and the activation temperature. The uncertainty on such parameters is modelled by a data‐informed probability density function obtained by a Bayesian inversion procedure, based on the displacement experimental data provided by NIST. To overcome the computational challenges of both the Bayesian inversion and the forward uncertainty quantification analysis we employ a multi‐fidelity surrogate modelling technique, specifically the multi‐index stochastic collocation method. The proposed approach allows us to achieve a 33% reduction in the uncertainties on the prediction of residual strains compared with what we would get basing the forward UQ analysis on a‐priori ranges for the uncertain parameters, and in particular the mode of the probability density function of such quantities (i.e., its “most likely value”, roughly speaking) results to be in good agreement with the experimental data provided by NIST, even though only displacement data were used for the Bayesian inversion procedure.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • simulation
  • activation
  • powder bed fusion