Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Prévost, J. H.

  • Google
  • 1
  • 3
  • 137

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2003Brittle fracture in polycrystalline microstructures with the extended finite element method137citations

Places of action

Chart of shared publication
Sukumar, N.
1 / 2 shared
Srolovitz, David
1 / 65 shared
Baker, T. J.
1 / 1 shared
Chart of publication period
2003

Co-Authors (by relevance)

  • Sukumar, N.
  • Srolovitz, David
  • Baker, T. J.
OrganizationsLocationPeople

article

Brittle fracture in polycrystalline microstructures with the extended finite element method

  • Sukumar, N.
  • Prévost, J. H.
  • Srolovitz, David
  • Baker, T. J.
Abstract

A two-dimensional numerical model of microstructural effects in brittle fracture is presented, with an aim towards the understanding of toughening mechanisms in polycrystalline materials such as ceramics. Quasi-static crack propagation is modelled using the extended finite element method (X-FEM) and microstructures are simulated within the framework of the Potts model for grain growth. In the X-FEM, a discontinuous function and the two-dimensional asymptotic crack-tip displacement fields are added to the finite element approximation to account for the crack using the notion of partition of unity. This enables the domain to be modelled by finite elements with no explicit meshing of the crack surfaces. Hence, crack propagation can be simulated without any user-intervention or the need to remesh as the crack advances. The microstructural calculations are carried out on a regular lattice using a kinetic Monte Carlo algorithm for grain growth. We present a novel constrained Delaunay triangulation algorithm with grain boundary smoothing to create a finite element mesh of the microstructure. The fracture properties of the microstructure are characterized by assuming that the critical fracture energy of the grain boundary (<i>G</i>c<sup>gb</sup>) is different from that of the grain interior (<i>G</i>c<sup>i</sup>). Numerical crack propagation simulations for varying toughness ratios <i>G</i>c<sup>gb</sup>/<i>G</i>c<sup>i</sup> are presented, to study the transition from the intergranular to the transgranular mode of crack growth. This study has demonstrated the capability of modelling crack propagation through a material microstructure within a finite element framework, which opens-up exciting possibilities for the fracture analysis of functionally graded material systems. 

Topics
  • impedance spectroscopy
  • surface
  • grain
  • grain boundary
  • simulation
  • crack
  • two-dimensional
  • ceramic
  • grain growth
  • polycrystalline microstructure