People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Davey, Keith
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2022Scaled cohesive zone models for fatigue crack propagationcitations
- 2022A Two-Experiment Approach to Scaling in Biomechanicscitations
- 2020Exact and inexact scaled models for hot forgingcitations
- 2018A computationally efficient cohesive zone model for fatiguecitations
- 2018Experimental investigation into finite similitude for metal forming processescitations
- 2017Frequency-Dependent Cohesive Zone Models for Fatiguecitations
- 2011Analytical solutions for vibrating fractal composite rods and beamscitations
- 2009Vertical twin roll casting process of Mg alloy with high aluminium contents
- 2007A solution methodology for contacting domains in pressure die castingcitations
- 2007Mechanical properties and metallugical qualities of magnesium alloy sheets manufactured by twin-roll castingcitations
- 2006Boundary element stress analysis for bi-metallic dies in pressure diecastingcitations
- 2006Boundary element stress analysis for copper-based dies in pressure die castingcitations
- 2006Bi-metallic dies for rapid die castingcitations
- 2006Experimental investigation into the thermal behavior of copper-alloyed dies in pressure die castingcitations
- 2005Effects of rolling condition on warm deep drawability of magnesium alloy sheets produced by twin-roll strip castingcitations
- 2004An Experimental Study Of the Pressure Die Casting Process
- 2004Forming Characteristics of cast magnesium alloy sheets manufactured by roll strip casting processcitations
- 2004Semi-solid manufacturing process of magnesium alloys by twin-roll castingcitations
- 2004An experimental study of the pressure die casting process
- 2003Mechanical properties of magnesium alloy sheets produced by semi-solid roll strip casting
- 2002The practicalities of ring rolling simulation for profiled ringscitations
- 2002The effect of vibration on surface finish for semisolid and cast componentscitations
- 2002A practical method for finite element ring rolling simulation using the ALE flow formulationcitations
- 2002Optimization for boiling heat transfer determination and enhancement in pressure die castingcitations
- 2001Novel cooling channel shapes in pressure die castingcitations
- 2001Efficient strategies for the simulation of railway wheel formingcitations
- 2000An experimental and numerical investigation into the thermal behavior of the pressure die casting processcitations
- 2000Determination of heat transfer coefficients using a 1-d flow model applied to irregular shaped cooling channels in pressure diecastingcitations
- 2000Predicting heat extraction due to boiling in the cooling channels during the pressure die casting processcitations
Places of action
Organizations | Location | People |
---|
article
Novel cooling channel shapes in pressure die casting
Abstract
The pressure die casting involves die designs incorporating cooling channels positioned to facilitate the controlled extraction of energy from a solidifying casting. It is now known that subcooled nucleate boiling can occur in cooling channels and this paper is concerned with novel cooling channel shapes that are optimized to promote and enhance this boiling and thus reduce casting times. Shape sensitivity analysis is applied to a boundary element model using the material derivative adjoint variable technique. Mesh node positions on the cooling channels are used as the design parameters. The sensitivities are used in a conjugate gradient non-linear optimization routine. It is shown that with this approach cooling channels can be designed to maximize boiling heat transfer whilst at the same time allow some degree of control of spatial temperature variation over the die cavity surface. Simulation and experimental results are presented for a traditional die and an optimized die. A 60 per cent reduction in cycle time is achieved with the optimized die. Copyright © 2001 John Wiley & Sons, Ltd.