Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Özliseli, Ilayda

  • Google
  • 1
  • 7
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Semi-solid 3D printing of mesoporous silica nanoparticle-incorporated xeno-free nanomaterial hydrogels for protein delivery4citations

Places of action

Chart of shared publication
Wang, Qingbo
1 / 6 shared
Mahran, Alaa
1 / 2 shared
Özliseli, Ezgi
1 / 4 shared
Xu, Chunlin
1 / 23 shared
Rosenholm, Jessica M.
1 / 13 shared
Bhadane, Dr. Rajendra
1 / 1 shared
Wang, Xiaoju
1 / 14 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Wang, Qingbo
  • Mahran, Alaa
  • Özliseli, Ezgi
  • Xu, Chunlin
  • Rosenholm, Jessica M.
  • Bhadane, Dr. Rajendra
  • Wang, Xiaoju
OrganizationsLocationPeople

article

Semi-solid 3D printing of mesoporous silica nanoparticle-incorporated xeno-free nanomaterial hydrogels for protein delivery

  • Wang, Qingbo
  • Mahran, Alaa
  • Özliseli, Ezgi
  • Xu, Chunlin
  • Rosenholm, Jessica M.
  • Bhadane, Dr. Rajendra
  • Wang, Xiaoju
  • Özliseli, Ilayda
Abstract

ultifunctional biomaterial inks are in high demand for adapting hydrogels in biomedical applications through three-dimensional (3D) printing. Our previously developed xeno-free system consisting of anionic cellulose nanofibers (T-CNF) and methacrylated galactoglucomannan (GGMMA) as a photo(bio)polymer provides high-performance ink fidelity in extrusion-based 3D printing. The fusion between nanoparticles and this biomaterial-ink system is a promising yet challenging avenue worth exploring, due to the colloidal stability of T-CNF being sensitive to electrostatic interactions. Mesoporous silica nanoparticles (MSNs), with their robust ceramic matrix and fine-tunable surface chemistries, are well-established nanocarriers for different biologicals. Here, we fabricated MSNs with different surface modifications resulting in a net surface charge ranging from highly negative to highly positive to develop printable MSNs-laden nanocomposite biomaterial inks. We utilized rheology as a comprehensive tool to address the matrix interactions with differently surface-charged MSNs. Fluorescently labeled bovine serum albumin (FITC-BSA) was used as a model protein for MSN loading, whereby negatively or neutral-charged MSNs were found suitable to formulate FITC-BSA-loaded biomaterial inks of T-CNF/GGMMA. Depending on the particles’ surface charge, FITC-BSA showed different release profiles and preserved its stability after release. Lastly, the proof-of-concept to deliver large-sized biological cargo with MSN-laden nanocomposite biomaterial inks was established via the 3D printing technique.

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • surface
  • polymer
  • extrusion
  • ceramic
  • cellulose