Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Thiel, Karsten

  • Google
  • 10
  • 51
  • 106

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2024Feasibility Study on the Generation of Nanoporous Metal Structures by Means of Selective Alloy Depletion in Halogen-Rich Atmospherescitations
  • 2022Ultrahigh sulfur loading tolerant cathode architecture with extended cycle life for high energy density lithium–sulfur batteries35citations
  • 2022Application of Poly-L-Lysine for Tailoring Graphene Oxide Mediated Contact Formation between Lithium Titanium Oxide LTO Surfaces for Batteries1citations
  • 2022Application of Poly-L-Lysine for Tailoring Graphene Oxide Mediated Contact Formation between Lithium Titanium Oxide LTO Surfaces for Batteries1citations
  • 2021An in vitro bone-to-bone adhesion test method using the compression shear test4citations
  • 2021Highly porous nanocoatings tailored for inverse nanoparticle‐polymer composites3citations
  • 2021Study of anodic oxide films formed on solid-state sintered SiC-ceramic at high anodic potentials8citations
  • 2017Quantitative determination of residual silver distribution in nanoporous gold and its influence on structure and catalytic performance50citations
  • 2016Functional pressure-sensitive adhesive tapes for local anodization of aluminium surfaces4citations
  • 2013Strukturelle Untersuchung der amorph/kristallinen Grenzfläche mittels quantitativer hochauflösender Transmissionselektronenmikroskopie an den Systemen a-Si/c-Si und a-Ge/c-Si ; Structural investigation of the amorphous/crystalline interface by means of quantitative high-resolution transmission electron microscopy on the systems a-Si/c-Si and a-Ge/c-Sicitations

Places of action

Chart of shared publication
Weise, Jörg
1 / 9 shared
Hantzsche, Kerstin
1 / 8 shared
Uhrlaub, Birgit
1 / 1 shared
Baumeister, Joachim
1 / 9 shared
Lehmhus, Dirk
1 / 19 shared
Thangadurai, Venkataraman
1 / 88 shared
Schwenzel, Julian
1 / 6 shared
Abraham, Akhil Mammoottil
1 / 2 shared
Shakouri, Mohsen
1 / 1 shared
Paterson, Alisa
1 / 1 shared
Ponnurangam, Sathish
1 / 1 shared
Xiao, Qunfeng
1 / 1 shared
Corrales, Yendry
1 / 1 shared
Rischka, Klaus
2 / 5 shared
Grinberg, Ilya
1 / 2 shared
Pereira-Pinheiro, Marta
2 / 2 shared
Borge-Durán, Ignacio
1 / 1 shared
Nguyen, Minh Tri
1 / 1 shared
Noeske, Paul-Ludwig Michael
2 / 8 shared
Vega-Baudrit, J. R.
1 / 1 shared
Grinberg, I.
1 / 1 shared
Nguyen, T.
1 / 10 shared
Corrales-Ureña, Y. R.
1 / 2 shared
Borge-Durán, I.
1 / 1 shared
Lührs, Vanessa
1 / 1 shared
Stößlein, Sebastian
1 / 1 shared
Hartwig, Andreas
3 / 8 shared
Grunwald, Ingo
1 / 1 shared
Strodtmann, Laura
1 / 1 shared
Urbaniak, Tobias
1 / 2 shared
Hubley, Austin N.
1 / 1 shared
Sloboda, Laura
1 / 1 shared
Hoffmann, Ron
1 / 2 shared
Simunkova, Lenka
1 / 2 shared
Michaelis, Alexander
1 / 85 shared
Aniol, Jonas
1 / 1 shared
Schneider, Michael
1 / 33 shared
Noeske, Michael
1 / 9 shared
Rosenauer, Andreas
1 / 13 shared
Zanaga, Daniele
1 / 2 shared
Mahr, Christoph
1 / 4 shared
Wittstock, Arne
1 / 3 shared
Schowalter, Marco
1 / 6 shared
Lackmann, Anastasia
1 / 1 shared
Schwan, Martin
1 / 1 shared
Bals, Sara
1 / 93 shared
Kundu, Paromita
1 / 1 shared
Burchardt, Malte
1 / 2 shared
Kleemeier, Malte
1 / 1 shared
Krieger, Antonina
1 / 1 shared
Berndt, Lissy
1 / 2 shared
Chart of publication period
2024
2022
2021
2017
2016
2013

Co-Authors (by relevance)

  • Weise, Jörg
  • Hantzsche, Kerstin
  • Uhrlaub, Birgit
  • Baumeister, Joachim
  • Lehmhus, Dirk
  • Thangadurai, Venkataraman
  • Schwenzel, Julian
  • Abraham, Akhil Mammoottil
  • Shakouri, Mohsen
  • Paterson, Alisa
  • Ponnurangam, Sathish
  • Xiao, Qunfeng
  • Corrales, Yendry
  • Rischka, Klaus
  • Grinberg, Ilya
  • Pereira-Pinheiro, Marta
  • Borge-Durán, Ignacio
  • Nguyen, Minh Tri
  • Noeske, Paul-Ludwig Michael
  • Vega-Baudrit, J. R.
  • Grinberg, I.
  • Nguyen, T.
  • Corrales-Ureña, Y. R.
  • Borge-Durán, I.
  • Lührs, Vanessa
  • Stößlein, Sebastian
  • Hartwig, Andreas
  • Grunwald, Ingo
  • Strodtmann, Laura
  • Urbaniak, Tobias
  • Hubley, Austin N.
  • Sloboda, Laura
  • Hoffmann, Ron
  • Simunkova, Lenka
  • Michaelis, Alexander
  • Aniol, Jonas
  • Schneider, Michael
  • Noeske, Michael
  • Rosenauer, Andreas
  • Zanaga, Daniele
  • Mahr, Christoph
  • Wittstock, Arne
  • Schowalter, Marco
  • Lackmann, Anastasia
  • Schwan, Martin
  • Bals, Sara
  • Kundu, Paromita
  • Burchardt, Malte
  • Kleemeier, Malte
  • Krieger, Antonina
  • Berndt, Lissy
OrganizationsLocationPeople

article

Highly porous nanocoatings tailored for inverse nanoparticle‐polymer composites

  • Strodtmann, Laura
  • Thiel, Karsten
  • Urbaniak, Tobias
  • Hartwig, Andreas
  • Hubley, Austin N.
  • Sloboda, Laura
  • Hoffmann, Ron
Abstract

S.271-292 ; A novel nanoparticle‐polymer composite is proposed, named inverse nanocomposites in this work. First, a rigid percolating scaffold of nanoparticles is formed, which is filled with a matrix and then polymerized. Targeted for use in thin‐film applications, these mesoporous nanoparticle scaffolds are prepared by combining the sol-gel chemistry of functionalized silanes with nanoparticles in dispersions. The nanoparticle coatings have high porosity, low density, good adhesion to the substrate, and interesting non‐classical properties, such as absorbency of highly viscous fluids. The porosity, which can be adjusted by changing the composition and preparation parameters, reaches 75%. The porous scaffold can be infiltrated with various fluids, including acrylic and epoxy monomers and even highly viscous pressure‐sensitive adhesives. If the monomers are polymerized after imbibition, the inverse nanocomposite is formed, consisting of a percolating particle network surrounded by a polymeric binder. Hence, the morphology comprises an interpenetrating system of two co‐continuous phases and not merely particles dispersed in a polymeric phase, as is typical for conventionally prepared nanocomposites. ; 2 ; Nr.2

Topics
  • nanoparticle
  • porous
  • nanocomposite
  • density
  • impedance spectroscopy
  • dispersion
  • polymer
  • phase
  • porosity