People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cuisinier, Olivier
École Polytechnique Fédérale de Lausanne
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Statistical and Predictive Analyses of the Strength Development of a Cement-Treated Clayey Soilcitations
- 2022Energy pile skin friction at interface in clays under temperature cyclescitations
- 2018Impact of Severe Climate Conditions on Loss of Mass, Strength, and Stiffness of Compacted Fine-Grained Soils–Portland Cement Blendscitations
- 2018Impact of Severe Climate Conditions on Loss of Mass, Strength, and Stiffness of Compacted Fine-Grained Soils–Portland Cement Blendscitations
- 2014Long term behavior of lime-treated clayey soil exposed to successive drying and wettingcitations
- 2014Impact of high-pH fluid circulation on long term hydromechanical behaviour and microstructure of compacted clay from the laboratory of Meuse-Haute Marne (France)citations
- 2014Weathering of a lime-treated clayey soil by drying and wetting cyclescitations
- 2014Chemo-mechanical modelling of lime treated soilscitations
- 2013Identification of coupling parameters between shear strength behaviour of compacted soils and chemical's effects with an evolutionary-based data mining techniquecitations
- 2011Microstructure and hydraulic conductivity of a compacted lime-treated soilcitations
- 2010Chemo-mechanical couplings in compacted argillite submitted to high-pH environment
- 2009Shear strength behaviour of compacted clayey soils percolated with an alkaline solutioncitations
- 2008Microstructure of a compacted soil submitted to an alkaline PLUMEcitations
- 2006Suction Induced Effects on the Fabric of a Structured Soilcitations
- 2004Fabric evolution during hydromechanical loading of a compacted siltcitations
Places of action
Organizations | Location | People |
---|
article
Fabric evolution during hydromechanical loading of a compacted silt
Abstract
International audience ; A study was undertaken on a compacted silt to determine fabric modifications induced by suction and/or stress variations. The link between fabric and hydromechanical behaviour was also investigated. A suction‐controlled oedometer, using air overpressure, was developed for this purpose and mercury intrusion porosimetry was employed to determine sample fabric. The initial samples fabric was made of macro and micropores. It was shown that suction increase produced a strong decrease in the macroporosity associated with an increase in microporosity. However, some macropores were not significantly affected by the suction increase; this phenomenon might be related to the initial fabric of the samples. Second, it appears that loading under saturated conditions also produces strong fabric modification: the higher the applied stress, the lower the macroporosity. Soil fabric depends on the maximum stress experienced by the soil. Finally, some tests have shown the influence of suction, as well as the role of the degree of saturation, on the deformation process and the mechanical behaviour. The test results show that in the case of unsaturated mechanical loading, all macropores are not destroyed by the mechanical loading