People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sinkus, Ralph
King's College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Biomechanical Assessment of Liver Integrity: Prospective Evaluation of Mechanical Versus Acoustic <scp>MR</scp> Elastographycitations
- 2020On the origin of frequency power-law for tissue mechanics in elastography
- 2019Magnetic resonance elastography of skeletal muscle deep tissue injurycitations
- 2019Magnetic resonance elastography of skeletal muscle deep tissue injury
- 2015MR Elastography Can Be Used to Measure Brain Stiffness Changes as a Result of Altered Cranial Venous Drainage During Jugular Compressioncitations
- 2014Tumour biomechanical response to the vascular disrupting agent ZD6126 in vivo assessed by magnetic resonance elastography.citations
- 2014Viscoelastic parameters for quantifying liver fibrosiscitations
- 2013Measuring anisotropic muscle stiffness properties using elastographycitations
- 2013Curl-based Finite Element Reconstruction of the Shear Modulus Without Assuming Local Homogeneitycitations
- 2011Using static preload with magnetic resonance elastography to estimate large strain viscoelastic properties of bovine livercitations
- 2011Viscoelastic properties of the tongue and soft palate using MR elastographycitations
- 2009Magnetic resonance elastography in the liver at 3 Tesla using a second harmonic approachcitations
- 2008In vivo brain viscoelastic properties measured by magnetic resonance elastographycitations
- 2007MR elastography of breast lesionscitations
- 2005Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastographycitations
Places of action
Organizations | Location | People |
---|
article
MR elastography of breast lesions
Abstract
<p>The purpose of this analysis is to explore the potential diagnostic gain provided by the viscoelastic shear properties of breast lesions for the improvement of the specificity of contrast enhanced dynamic MR mammography (MRM). The assessment of viscoelastic properties is done via dynamic MR elastography (MRE) and it is demonstrated that the complex shear modulus of in vivo breast tissue follows within the frequency range of clinical MRE a power law behavior. Taking benefit of this frequency behavior, data are interpreted in the framework of the exact model for wave propagation satisfying the causality principle. This allows to obtain the exponent of the frequency power law from the complex shear modulus at one single frequency which is validated experimentally. Thereby, scan time is drastically reduced. It is observed that malignant tumors obtain larger exponents of the power law than benign tumors indicating a more liquid-like behavior. The combination of the Breast Imaging Reporting and Data System (BIRADS) categorization obtained via MRM with viscoelastic information leads to a substantial rise in specificity. Analysis of 39 malignant and 29 benign lesions shows a significant diagnostic gain with an increase of about 20% in specificity at 100% sensitivity.</p>