People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gooneratne, Chinthaka P.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2021IoT-associated impedimetric biosensing for point-of-care monitoring of kidney healthcitations
- 2020Molecularly Imprinted Polymer‐based detection of creatinine towards smart sensingcitations
- 2015Rapid and molecular selective electrochemical sensing of phthalates in aqueous solutioncitations
- 2014Introducing molecular selectivity in rapid impedimetric sensing of phthalatescitations
- 2013MEMS based impedimetric sensing of phthalatescitations
- 2013Technique for rapid detection of phthalates in water and beveragescitations
- 2013Electrochemical impedance spectroscopy based MEMS sensors for phthalates detection in water and juicescitations
Places of action
Organizations | Location | People |
---|
article
Molecularly Imprinted Polymer‐based detection of creatinine towards smart sensing
Abstract
Creatinine is a biological metabolic waste which constantly gets diffused in the human blood. It is excreted by the kidneys to reduce levels of blood toxicity thus maintaining homeostasis. In this research, a synthetic polymer for determining the creatinine levels has been developed using Molecularly Imprinted Polymerization (MIP) synthesis protocol. The polymer is highly specific towards selective adsorption of creatinine molecules. The developed MIP is capable of determining concentrations of creatinine up to 50 parts per million (ppm) which is three times higher than the normal range of creatinine concentration in the human blood. The functioning of the sensor is checked with electrochemical impedance spectroscopy (EIS) technique. Although the purpose of this work is early diagnosis of creatinine rise and to monitor kidney health for avoiding further healthcare‐associated complications, the results are accessed up to 50 ppm. The MIP functionality is accessed up to 50 ppm to confirm that even if the developed sensing technology is used for a patient having higher creatinine concentrations, the MIP polymer has the potential to adsorb creatinine and display the results. After the successful development of MIP polymer, a LoRaWAN (Long Range Wide Area Network) based Point‐of‐Care (PoC) sensing device has been developed in this research and results are displayed. The portable device promotes early detection of kidney injury, which will help start the treatment early. The results obtained from the system will help doctors in taking necessary measures to avoid further kidney (renal) disorders including acute kidney failure and chronic kidney failure.