Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kayode, O.

  • Google
  • 4
  • 2
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2021Elektrochemisches Verhalten in Meerwasser und Gefügeausbildung von nicht artgleichen Rührreibschweißverbindungen (AA1050 und AZ91D)1citations
  • 2021Microstructural and Mechanical Properties of Friction Stir Welding of AA10502citations
  • 2021Microstructural and Mechanical Properties of Friction Stir Welding of AZ91Dcitations
  • 2019Preliminary studies on molecular dynamics simulation of friction stir processing of aluminium alloys2citations

Places of action

Chart of shared publication
Akinlabi, Esther Titilayo
4 / 235 shared
Olufayo, O. A.
1 / 1 shared
Chart of publication period
2021
2019

Co-Authors (by relevance)

  • Akinlabi, Esther Titilayo
  • Olufayo, O. A.
OrganizationsLocationPeople

article

Elektrochemisches Verhalten in Meerwasser und Gefügeausbildung von nicht artgleichen Rührreibschweißverbindungen (AA1050 und AZ91D)

  • Kayode, O.
  • Akinlabi, Esther Titilayo
Abstract

<p>This paper presents the electrochemical performance and microstructural evolution of friction stir welded joint of dissimilar AA1050 and AZ91D in seawater, for potential applications in the transportation industry. The corrosion behavior of the dissimilar weld was compared to the corrosion behavior of the parent materials, and similar welds of each alloy. The experiments were successfully conducted with an H13 hot-working tool steel in butt-joint configuration. The results revealed the presence of intercalated microstructure in the dissimilar weld and homogenous microstructures in the similar welds. The corrosion resistance properties of the parent materials and similar welds were higher than that of the dissimilar weld sample. The dissimilar weld has a current density of 3.83×10<sup>−5</sup> A/cm<sup>2</sup> and corrosion rate of 9.99×10<sup>−4</sup> mm/year; and is most susceptible to corrosion, due to the galvanic coupling between the dissimilar alloys and intermetallic compounds. The similar weld of AA1050 has a current density of 1.99×10<sup>−7</sup> A/cm<sup>2</sup> and corrosion rate of 1.44×10<sup>−3</sup> mm/year, while the similar weld of AZ91D has a current density of 8.58×10<sup>−6</sup> A/cm<sup>2</sup> and corrosion rate of 1.13×10<sup>−1</sup> mm/year.</p>

Topics
  • density
  • impedance spectroscopy
  • compound
  • corrosion
  • experiment
  • tool steel
  • current density
  • intermetallic