People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Näkki, Jonne
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2019Laser Strip Cladding for Large Area Metal Depositioncitations
- 2018Properties of alloy 625 claddings made with laser and CMT methods
- 2018Sliding wear performance of metallic laser coatings against composite PTFE sealscitations
- 2017Effect of minor elements on solidification cracking and dilution of alloy 625 powders in laser claddingcitations
- 2016High performance corrosion resistant coatings by novel coaxial cold- and hot-wire laser cladding methodscitations
Places of action
Organizations | Location | People |
---|
article
Sliding wear performance of metallic laser coatings against composite PTFE seals
Abstract
Laser coatings are frequently used in applications where they slide against various elastomeric and polymeric seals or guide bands in different environments. Examples of such applications include hydraulics, maritime propulsion systems and components in pulp & paper industry. In this study highly corrosion resistant Inconel 625 (DIN Mat. No. 2.4856) and Thermanit 2509 super duplex stainless steel (~1.4501) coatings manufactured by novel coaxial hot-wire laser cladding technique are tested in dry conditions at room temperature against various composite polytetrafluoroethylene (PTFE) seals. Despite only small difference in coating surface hardness, ~1.4501 and 2.4856 show significant differences in wear and friction performance against various seals. For instance, ~1.4501 is superior to 2.4856 against glass fiber and MoS2 reinforced PTFE in terms of wear resistance and friction characteristics, whereas 2.4856 performs better against bronze reinforced PTFE seal. The reference Stellite laser coating, which is the hardest counter surface in this study, exhibits the best wear behavior against all the seal materials tested. The differences in wear performances are explained by cohesive and adhesive wear mechanisms.